

https://www.oreilly.com/topics/security?cmp=pd-security-free-lp-scny16_freereportsad_site

Jim Bird

DevOpsSec
Securing Software through

Continuous Delivery

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-491-95899-5

[LSI]

DevOpsSec
by Jim Bird

Copyright © 2016 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safaribooksonline.com). For
more information, contact our corporate/institutional sales department:
800-998-9938 or corporate@oreilly.com.

Editor: Courtney Allen
Production Editor: Shiny Kalapurakkel
Copyeditor: Bob & Dianne Russell, Octal
Publishing, Inc.

Proofreader: Kim Cofer
Interior Designer: David Futato
Cover Designer: Randy Comer
Illustrator: Rebecca Demarest

June 2016: First Edition

Revision History for the First Edition
2016-05-24: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. DevOpsSec, the
cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and
the author disclaim all responsibility for errors or omissions, including without limi‐
tation responsibility for damages resulting from the use of or reliance on this work.
Use of the information and instructions contained in this work is at your own risk. If
any code samples or other technology this work contains or describes is subject to
open source licenses or the intellectual property rights of others, it is your responsi‐
bility to ensure that your use thereof complies with such licenses and/or rights.

http://safaribooksonline.com

Table of Contents

1. DevOpsSec: Delivering Secure Software through
Continuous Delivery. 1
Introduction 1

2. Security and Compliance Challenges and Constraints in DevOps. . . . 7
Speed: The Velocity of Delivery 7
Where’s the Design? 8
Eliminating Waste and Delays 9
It’s in the Cloud 9
Microservices 11
Containers 12
Separation of Duties in DevOps 13
Change Control 15

3. Keys to Injecting Security into DevOps. 17
Shift Security Left 19
OWASP Proactive Controls 20
Secure by Default 21
Making Security Self-Service 22
Using Infrastructure as Code 23
Iterative, Incremental Change to Contain Risks 24
Use the Speed of Continuous Delivery to Your Advantage 25
The Honeymoon Effect 26

4. Security as Code: Security Tools and Practices in
Continuous Delivery. 29
Continuous Delivery 29

iii

Continuous Delivery at London Multi-Asset Exchange 31
Injecting Security into Continuous Delivery 32
Secure Design in DevOps 36
Writing Secure Code in Continuous Delivery 41
Security Testing in Continuous Delivery 46
Securing the Infrastructure 54
Security in Production 57

5. Compliance as Code. 69
Defining Policies Upfront 70
Automated Gates and Checks 70
Managing Changes in Continuous Delivery 71
Separation of Duties in the DevOps Audit Toolkit 72
Using the Audit Defense Toolkit 73
Code Instead of Paperwork 73

6. Conclusion: Building a Secure DevOps Capability and Culture. 75

iv | Table of Contents

CHAPTER 1

DevOpsSec: Delivering Secure
Software through

Continuous Delivery

Introduction
Some people see DevOps as another fad, the newest new-thing over‐
hyped by Silicon Valley and by enterprise vendors trying to stay rel‐
evant. But others believe it is an authentically disruptive force that is
radically changing the way that we design, deliver, and operate sys‐
tems.

In the same way that Agile and Test-Driven Development (TDD)
and Continuous Integration has changed the way that we write code
and manage projects and product development, DevOps and Infra‐
structure as Code and Continuous Delivery is changing IT service
delivery and operations. And just as Scrum and XP have replaced
CMMi and Waterfall, DevOps is replacing ITIL as the preferred way
to manage IT.

DevOps organizations are breaking down the organizational silos
between the people who design and build systems and the people
who run them—silos that were put up because of ITIL and COBIT
to improve control and stability but have become an impediment
when it comes to delivering value for the organization.

1

1 From an early post on Continuous Deployment: http://timothyfitz.com/2009/02/10/
continuous-deployment-at-imvu-doing-the-impossible-fifty-times-a-day/

Instead of trying to plan and design everything upfront, DevOps
organizations are running continuous experiments and using data
from these experiments to drive design and process improvements.

DevOps is finding more effective ways of using the power of auto‐
mation, taking advantage of new tools such as programmable con‐
figuration managers and application release automation to simplify
and scale everything from design to build and deployment and
operations, and taking advantage of cloud services, virtualization,
and containers to spin up and run systems faster and cheaper.

Continuous Delivery and Continuous Deployment, Lean Startups
and MVPs, code-driven configuration management using tools like
Ansible and Chef and Puppet, NoOps in the cloud, rapid self-service
system packaging and provisioning with Docker and Vagrant and
Terraform are all changing how everyone in IT thinks about how to
deliver and manage systems. And they’re also changing the rules of
the game for online business, as DevOps leaders use these ideas to
out-pace and out-innovate their competitors.

The success that DevOps leaders are achieving is compelling.
According to Puppet Labs’ 2015 State of DevOps Report:

• High-performers deploy changes 30 times more often than
other organizations, with lead times that are 200 times shorter.

• Their change success rate is 60 times higher.
• And when something goes wrong, they can recover from fail‐

ures 168 times faster.

What do you need to do to achieve these kinds of results? And, how
can you do it in a way that doesn’t compromise security or compli‐
ance, or, better, in a way that will actually improve your security pos‐
ture and enforce compliance?

As someone who cares deeply about security and reliability in sys‐
tems, I was very skeptical when I first heard about DevOps, and
“doing the impossible 50 times a day.”1 It was too much about how to
“move fast and break things” and not enough about how to build
systems that work and that could be trusted. The first success stories

2 | Chapter 1: DevOpsSec: Delivering Secure Software through Continuous Delivery

http://timothyfitz.com/2009/02/10/continuous-deployment-at-imvu-doing-the-impossible-fifty-times-a-day/
http://timothyfitz.com/2009/02/10/continuous-deployment-at-imvu-doing-the-impossible-fifty-times-a-day/
https://puppetlabs.com/2015-devops-report

were from online games and social-media platforms that were
worlds away from the kinds of challenges that large enterprises face
or the concerns of small businesses.

I didn’t see anything new or exciting in “branching in code” and
“dark launching” or developers owning their own code and being
responsible for it in production. Most of this looked like a step back‐
ward to the way things were done 25 or 30 years ago, before CMMi
and ITIL were put in to get control over cowboy coding and hacking
in production.

But the more I looked into DevOps, past the hype, I found impor‐
tant, substantial new ideas and patterns that could add real value to
the way that systems are built and run today:

Infrastructure as Code
Defining and managing system configuration through code that
can be versioned and tested in advance using tools like Chef or
Puppet dramatically increases the speed of building systems and
offers massive efficiencies at scale. This approach to configura‐
tion management also provides powerful advantages for secu‐
rity: full visibility into configuration details, control over
configuration drift and elimination of one-off snowflakes, and a
way to define and automatically enforce security policies at run‐
time.

Continuous Delivery
Using Continuous Integration and test automation to build
pipelines from development to test and then to production pro‐
vides an engine to drive change and at the same time a key con‐
trol structure for compliance and security, as well as a safe and
fast path for patching in response to threats.

Continuous monitoring and measurement
This involves creating feedback loops from production back to
engineering, collecting metrics, and making them visible to
everyone to understand how the system is actually used and
using this data to learn and improve. You can extend this to
security to provide insight into security threats and enable
“Attack-Driven Defense.”

Learning from failure
Recognizing that failures can and will happen, using them as
learning opportunities to improve in fundamental ways through

Introduction | 3

2 Velocity 2009: “10+ Deploys per Day.” https://www.youtube.com/watch?v=LdOe18KhtT4

blameless postmortems, injecting failure through chaos engi‐
neering, and practicing for failure in game days; all of this leads
to more resilient systems and more resilient organizations, and
through Red Teaming to a more secure system and a proven
incident response capability.

About DevOps
This paper is written for security analysts, security engineers, pen
testers, and their managers who want to understand how to make
security work in DevOps. But it also can be used by DevOps engi‐
neers and developers and testers and their managers who want to
understand the same thing.

You should have a basic understanding of application and infra‐
structure security as well as some familiarity with DevOps and
Agile development practices and tools, including Continuous Inte‐
gration and Continuous Delivery. There are several resources to
help you with this. Some good places to start:

• The Phoenix Project by Gene Kim, Kevin Behr, and George
Spafford is a good introduction to the hows and whys of
DevOps, and is surprisingly fun to read.

• Watch “10+ Deploys per Day,” John Allspaw and Paul Ham‐
mond’s presentation on Continuous Deployment, which intro‐
duced a lot of the world to DevOps ideas back in 2009.2

• And, if you want to understand how to build your own Contin‐
uous Delivery pipeline, read Continuous Delivery: Reliable Soft‐
ware Releases through Build, Test, and Deployment Automation
by Jez Humble and Dave Farley.

The more I talked to people at organizations like Etsy and Netflix
who have had real success with DevOps at scale, and the more I
looked into how enterprises like ING and Nordstrom and Capital
One and Inuit are successfully adopting DevOps, the more I started
to buy in.

And the more success that we have had in my own organization
with DevOps ideas and tools and practices, the more I have come to

4 | Chapter 1: DevOpsSec: Delivering Secure Software through Continuous Delivery

https://www.youtube.com/watch?v=LdOe18KhtT4

understand how DevOps, when done right, can be used to deliver
and run systems in a secure and reliable way.

Whether you call it SecDevOps, DevSecOps, DevOpsSec, or Rugged
DevOps, this is what this paper will explore.

We’ll begin by looking at the security and compliance challenges
that DevOps presents. Then, we’ll cover the main ideas in secure
DevOps and how to implement key DevOps practices and work‐
flows like Continuous Delivery and Infrastructure as Code to
design, build, deploy, and run secure systems. In Chapter 4, we’ll
map security checks and controls into these workflows. Because
DevOps relies so heavily on automation, we’ll look at different tools
that you can use along the way, emphasizing open source tools
where they meet the need, and other tools that I’ve worked with and
know well or that are new and worth knowing about. And, finally,
we’ll explore how to build compliance into DevOps, or DevOps into
compliance.

Introduction | 5

1 “AWS re:Invent 2015 | (DVO202) DevOps at Amazon: A Look at Our Tools and Pro‐
cesses.” https://www.youtube.com/watch?v=esEFaY0FDKc

CHAPTER 2

Security and Compliance
Challenges and Constraints

in DevOps

Let’s begin by looking at the major security and compliance chal‐
lenges and constraints for DevOps.

Speed: The Velocity of Delivery
The velocity of change in IT continues to increase. This became a
serious challenge for security and compliance with Agile develop‐
ment teams delivering working software in one- or two-week
sprints. But the speed at which some DevOps shops initiate and
deliver changes boggles the mind. Organizations like Etsy are push‐
ing changes to production 50 or more times each day. Amazon has
thousands of small (“two pizza”) engineering teams working inde‐
pendently and continuously deploying changes across their infra‐
structure. In 2014, Amazon deployed 50 million changes: that’s
more than one change deployed every second of every day.1

So much change so fast...

How can security possibly keep up with this rate of change? How
can they understand the risks, and what can they do to manage

7

https://www.youtube.com/watch?v=esEFaY0FDKc

them when there is no time to do pen testing or audits, and no place
to put in control gates, and you can’t even try to add a security sprint
or a hardening sprint in before the system is released to production?

Where’s the Design?
DevOps builds on Agile development practices and extends Agile
ideas and practices from development into operations.

A challenge for many security teams already working in Agile envi‐
ronments is that developers spend much less time upfront on
design. The Agile manifesto emphasizes “working software over
documentation,” which often means that “the code is the design,”
and “Big Design Up Front” is an antipattern in most Agile shops.
These teams want to start with a simple, clean approach and elabo‐
rate the design in a series of sprints as they get more information
about the problem domain. The principle of YAGNI (“You Ain’t
Gonna Need It”) reminds them that most features specified upfront
might never be used, so they try to cut the design and feature-set to
a minimum and deliver only what is important, as soon as they can,
continuously refactoring as they make changes.

Many DevOps teams take all of these ideas even further, especially
teams following a Lean Startup approach. They start with a Mini‐
mum Viable Product (MVP): the simplest and cheapest implemen‐
tation of an idea with a basic working feature-set, which is delivered
to real users in production as soon as possible. Then, using feedback
from those users, collecting metrics, and running A/B experiments,
they iterate and fill out the rest of the functionality, continuously
delivering changes and new features as quickly as possible in order
to get more feedback to drive further improvements in a continuous
loop, adapting and pivoting as needed.

All of this makes it difficult for security teams to understand where
and how they should step in and make sure that the design is secure
before coding gets too far along. How do you review the design if
design isn’t done, when there is no design document to be handed
off, and the design is constantly changing along with the code and
the requirements? When and how should you do threat modeling?

8 | Chapter 2: Security and Compliance Challenges and Constraints in DevOps

http://theleanstartup.com/

Eliminating Waste and Delays
DevOps is heavily influenced by Lean principles: maximizing effi‐
ciency and eliminating waste and delays and unnecessary costs. Suc‐
cess is predicated on being first to market with a new idea or feature,
which means that teams measure—and optimize for—the cycle-
time-to-delivery. Teams, especially those in a Lean Startup, want to
fail fast and fail early. They do rapid prototyping and run experi‐
ments in production, with real users, to see if their idea is going to
catch on or to understand what they need to change to make it suc‐
cessful.

This increases the tension between delivery and security. How much
do engineers need to invest—how much can they afford—in secur‐
ing code that could be thrown away or rewritten in the next few
days? When is building in security the responsible thing to do, and
when is it wasting limited time and effort?

In an environment driven by continuous flow of value and managed
through Kanban and other Lean techniques to eliminate bottlenecks
and using automation to maximize efficiency, security cannot get in
the way. This is a serious challenge for security and compliance, who
are generally more concerned about doing things right and mini‐
mizing risk than being efficient or providing fast turnaround.

It’s in the Cloud
Although you don’t need to run your systems in the cloud to take
advantage of DevOps, you probably do need to follow DevOps prac‐
tices if you are operating in the cloud. This means that the cloud
plays a big role in many organizations’ DevOps stories (and vice
versa).

In today’s cloud—Infrastructure as a Service (IaaS) and Platform as
a Service (PaaS)—platforms like Amazon AWS, Microsoft Azure,
and Google Cloud Platform do so much for you. They eliminate the
wait for hardware to be provisioned; they take away the upfront cost
of buying hardware and setting up a data center; and they offer elas‐
tic capacity on demand to keep up with growth. These services hide
the details of managing the data center and networks, and standing
up and configuring and managing and monitoring servers and stor‐
age.

Eliminating Waste and Delays | 9

There are so many capabilities included now, capabilities that most
shops can’t hope to provide on their own, including built-in security
and operations management functions. A cloud platform like AWS
offers extensive APIs into services for account management, data
partitioning, auditing, encryption and key management, failover,
storage, monitoring, and more. They also offer templates for quickly
setting up standard configurations.

But you need to know how to find and use all of this properly. And
in the shared responsibility model for cloud operations, you need to
understand where the cloud provider’s responsibilities end and
yours begin, and how to ensure that your cloud provider is actually
doing what you need them to do.

The Cloud Security Alliance’s “Treacherous Twelve” highlights some
of the major security risks facing users of cloud computing services:

1. Data breaches
2. Weak identity, credential, and access management
3. Insecure interfaces and APIs
4. System and application vulnerabilities
5. Account hijacking
6. Malicious insiders
7. Advanced Persistent Threats (APTs)
8. Data loss
9. Insufficient due diligence

10. Abuse and nefarious use of cloud services
11. Denial of Service
12. Shared technology issues

10 | Chapter 2: Security and Compliance Challenges and Constraints in DevOps

https://cloudsecurityalliance.org/download/the-treacherous-twelve-cloud-computing-top-threats-in-2016/

Microservices
Microservices are another part of many DevOps success stories.
Microservices—designing small, isolated functions that can be
changed, tested, deployed, and managed completely independently
—lets developers move fast and innovate without being held up by
the rest of the organization. This architecture also encourages devel‐
opers to take ownership for their part of the system, from design to
delivery and ongoing operations. Amazon and Netflix have had
remarkable success with building their systems as well as their
organizations around microservices.

But the freedom and flexibility that microservices enable come with
some downsides:

• Operational complexity. Understanding an individual microser‐
vice is simple (that’s the point of working this way). Under‐
standing and mapping traffic flows and runtime dependencies
between different microservices, and debugging runtime prob‐
lems or trying to prevent cascading failures is much harder. As
Michael Nygard says: “An individual microservice fits in your
head, but the interrelationships among them exceed any
human’s understanding.”

• Attack surface. The attack surface of any microservice might be
tiny, but the total attack surface of the system can be enormous
and hard to see.

• Unlike a tiered web application, there is no clear perimeter, no
obvious “choke points” where you can enforce authentication or
access control rules. You need to make sure that trust bound‐
aries are established and consistently enforced.

• The polyglot programming problem. If each team is free to use
what they feel are the right tools for the job (like at Amazon), it
can become extremely hard to understand and manage security
risks across many different languages and frameworks.

• Unless all of the teams agree to standardize on a consistent
activity logging strategy, forensics and auditing across different
services with different logging approaches can be a nightmare.

Microservices | 11

https://twitter.com/mtnygard/status/646350151494336512

Containers
Containers—LXC, rkt, and (especially) Docker—have exploded in
DevOps.

Container technologies like Docker make it much easier for devel‐
opers to package and deploy all of the runtime dependencies that
their application requires. This eliminates the “works on my
machine” configuration management problem, because you can ship
the same runtime environment from development to production
along with the application.

Using containers, operations can deploy and run multiple different
stacks on a single box with much less overhead and less cost than
using virtual machines. Used together with microservices, this
makes it possible to support microsegmentation; that is, individual
microservices each running in their own isolated, individually man‐
aged runtime environments.

Containers have become so successful, Docker in particular, because
they make packaging and deployment workflows easy for developers
and for operations. But this also means that it is easy for developers
—and operations—to introduce security vulnerabilities without
knowing it.

The ease of packaging and deploying apps using containers can also
lead to unmanageable container sprawl, with many different stacks
(and different configurations and versions of these stacks) deployed
across many different environments. Finding them all (even know‐
ing to look for them in the first place), checking them for vulnera‐
bilities, and making sure they are up-to-date with the latest patches
can become overwhelming.

And while containers provide some isolation and security protec‐
tion by default, helping to reduce the attack surface of an applica‐
tion, they also introduce a new set of security problems. Adrian
Mouat, author of Using Docker, lists five security concerns with
using Docker that you need to be aware of and find a way to man‐
age:

Kernel exploit
The kernel is shared between the host and all of the kernels,
which means that a vulnerability in the kernel exposes every‐
thing running on the machine to attack.

12 | Chapter 2: Security and Compliance Challenges and Constraints in DevOps

https://www.oreilly.com/ideas/five-security-concerns-when-using-docker

Denial of Service attacks
Problems in one container can DoS everything else running on
the same machine, unless you limit resources using cgroups.

Container breakouts
Because isolation in containers is not as strong as in a virtual
machine, you should assume that if an attacker gets access to
one container, he could break into any of the other containers
on that machine.

Poisoned images
Docker makes it easy to assemble a runtime stack by pulling
down dependencies from registries. However, this also makes it
easy to introduce vulnerabilities by pulling in out-of-date
images, and it makes it possible for bad guys to introduce mal‐
ware along the chain. Docker and the Docker community pro‐
vide tools like trusted registries and image scanning to manage
these risks, but everyone has to use them properly.

Compromising secrets
Containers need secrets to access databases and services, and
these secrets need to be protected.

You can lock down a container by using CIS guidelines and other
security best practices and using scanning tools like Docker Bench,
and you can minimize the container’s attack surface by stripping
down the runtime dependencies and making sure that developers
don’t package up development tools in a production container. But
all of this requires extra work and knowing what to do. None of it
comes out of the box.

Separation of Duties in DevOps
DevOps presents some challenges to compliance. One of the most
difficult ones to address is Separation of Duties (SoD).

SoD between ops and development is designed to reduce the risk of
fraud and prevent expensive mistakes and insider attacks by ensur‐
ing that individuals cannot make a change without approval or
transparency. Separation of Duties is spelled out as a fundamental
control in security and governance frameworks like ISO 27001,
NIST 800-53, COBIT and ITIL, SSAE 16 assessments, and regula‐
tions such as SOX, GLBA, MiFID II, and PCI DSS.

Separation of Duties in DevOps | 13

https://github.com/docker/docker-bench-security

2 http://www.kitchensoap.com/2009/06/23/slides-for-velocity-talk-2009/

Auditors look closely at SoD, to ensure that requirements for data
confidentiality and integrity are satisfied; that data and configura‐
tion cannot be altered by unauthorized individuals; and that confi‐
dential and sensitive data cannot be viewed by unauthorized
individuals. They review change control procedures and approval
gates to ensure that no single person has end-to-end control over
changes to the system, and that management is aware of all material
changes before they are made, and that changes have been properly
tested and reviewed to ensure that they do not violate regulatory
requirements. They want to see audit trails to prove all of this.

Even in compliance environments that do not specifically call for
SoD, strict separation is often enforced to avoid the possibility or the
appearance of a conflict of interest or a failure of controls.

By breaking down silos and sharing responsibilities between devel‐
opers and operations, DevOps seems to be in direct conflict with
SoD. Letting developers push code and configuration changes out to
production in Continuous Deployment raises red flags for auditors.
However, as we’ll look at in Chapter 5, it’s possible to make the case
that this can be done, as long as strict automated and manual con‐
trols and auditing are in place.

Another controversial issue is granting developers access to produc‐
tion systems in order to help support (and sometimes even help
operate) the code that they wrote, following Amazon’s “You build it,
you run it” model. At the Velocity Conference in 2009, John Allspaw
and Paul Hammond made strong arguments for giving developers
access, or at least limited access, to production:2

Allspaw: “I believe that ops people should make sure that develop‐
ers can see what’s happening on the systems without going through
operations... There’s nothing worse than playing phone tag with
shell commands. It’s just dumb.
Giving someone [i.e., a developer] a read-only shell account on
production hardware is really low risk. Solving problems without it
is too difficult.”
Hammond: “We’re not saying that every developer should have root
access on every production box.”

14 | Chapter 2: Security and Compliance Challenges and Constraints in DevOps

http://www.kitchensoap.com/2009/06/23/slides-for-velocity-talk-2009/
https://queue.acm.org/detail.cfm?id=1142065
https://queue.acm.org/detail.cfm?id=1142065

Any developer access to a regulated system, even read-only access,
raises questions and problems for regulators, compliance, infosec,
and customers. To address these concerns, you need to put strong
compensating controls in place:

• Limit access to nonpublic data and configuration.
• Review logging code carefully to ensure that logs do not contain

confidential data.
• Audit and review everything that developers do in production:

every command they execute, every piece of data that they
looked at.

• You need detective change control in place to track any changes
to code or configuration made outside of the Continuous Deliv‐
ery pipeline.

• You might also need to worry about data exfiltration: making
sure that developers can’t take data out of the system.

These are all ugly problems to deal with, but they can be solved.

At Etsy, for example, even in PCI-regulated parts of the system,
developers get read access to metrics dashboards (what Etsy calls
“data porn”) and exception logs so that they can help find problems
in the code that they wrote. But any changes or fixes to code or con‐
figuration are reviewed and made through their audited and auto‐
mated Continuous Deployment pipeline.

Change Control
How can you prove that changes are under control if developers are
pushing out changes 10 or 50 times each day to production? How
does a Change Advisory Board (CAB) function in DevOps? How
and when is change control and authorization being done in an
environment where developers push changes directly to production?
How can you prove that management was aware of all these changes
before they were deployed?

ITIL change management and the associated paperwork and meet‐
ings were designed to deal with big changes that were few and far
between. Big changes require you to work out operational depen‐
dencies in advance and to understand operational risks and how to
mitigate them, because big, complex changes done infrequently are

Change Control | 15

risky. In ITIL, smaller changes were the exception and flowed under
the bar.

DevOps reverses this approach to change management, by optimiz‐
ing for small and frequent changes—breaking big changes down to
small incremental steps, streamlining and automating how these
small changes are managed. Compliance and risk management need
to change to fit with this new reality.

16 | Chapter 2: Security and Compliance Challenges and Constraints in DevOps

CHAPTER 3

Keys to Injecting Security
into DevOps

Now let’s look at how to solve these problems and challenges, and
how you can wire security and compliance into DevOps.

Building Security into DevOps: Etsy’s Story
Etsy, a successful online crafts marketplace, is famous for its Con‐
tinuous Deployment model, where engineers (and managers and
even pets) push changes out 50 times or more every day. It is also
known for its blameless, “Just Culture,” in which engineers are
taught to embrace failure, as long as they learn from their mistakes.

Etsy’s security culture is built on top of its engineering culture and
connects with the wider culture of the organization. Some of its
driving principles are:

• Trust people to do the right thing, but still verify. Rely on code
reviews and testing and secure defaults and training to prevent
or catch mistakes. And if mistakes happen in production, run
postmortems to examine and understand what happened and
how to fix things at the source.

• “If it Moves, Graph it.” Make data visible to everyone so that
everyone can understand and act on it, including information
about security risks, threats, and attacks.

• “Just Ship It.” Every engineer can push to production at any
time. This includes security engineers. If something is broken

17

1 Rich Smith, Director of Security Engineering, Etsy. “Crafting an Effective Security
Organization.” QCon 2015 http://www.infoq.com/presentations/security-etsy

and you can fix it, fix it and ship the fix out right away. Security
engineers don’t throw problems over the wall to dev or ops if
they don’t have to. They work with other teams to understand
problems and get them fixed, or fix the problem themselves if
they can. Everyone uses the Continuous Deployment pipelines
and the same tools to push changes out to production, includ‐
ing the security team.

• Security cannot be a blocker. The word “No” is a finite resource
—use it only when you must. Security’s job is to work with
development and operations to help them to deliver, but
deliver safely. This requires security to be practical and make
realistic trade-offs when it comes to security findings. Is this
problem serious enough that it needs to block code from ship‐
ping now? Can it be fixed later? Or, does it really need to be
fixed at all? Understand the real risk to the system and to the
organization and deal with problems appropriately. By not cry‐
ing wolf, the security team knows that when serious problems
do come up, they will be taken seriously by everyone.

Etsy’s security team takes a number of steps to build relationships
between the security team and engineering.

“Designated Hackers” is a system by which each security engineer
supports four or five development teams across the organization
and are involved in design and standups. The security engineer
tries to understand what these teams are doing and raise a signal if
a security risk or question comes up that needs to be resolved. They
act as a channel and advocate between security and the develop‐
ment teams. This helps to build relationships, and builds visibility
into design and early stage decisions—when security matters most.

Every new engineering hire participates in one-week boot camps
where they can choose to work with the security team to under‐
stand what they do and help to solve problems. And each year
every engineer does a senior rotation where they spend a month
with another team and can choose to work with the security team.
These initiatives build understanding and relationships between
organizations and seed security champions in engineering.1

18 | Chapter 3: Keys to Injecting Security into DevOps

http://www.infoq.com/presentations/security-etsy

Shift Security Left
To keep up with the pace of Continuous Delivery, security must
“shift left,” earlier into design and coding and into the automated
test cycles, instead of waiting until the system is designed and built
and then trying to fit some security checks just before release. In
DevOps, security must fit into the way that engineers think and
work: more iterative and incremental, and automated in ways that
are efficient, repeatable, and easy to use. See Figure 3-1 for a com‐
parison between waterfall delivery and the DevOps cycle.

Figure 3-1. The waterfall cycle versus the DevOps cycle

Some organizations do this by embedding infosec specialists into
development and operations teams. But it is difficult to scale this
way. There are too few infosec engineers to go around, especially
ones who can work at the design and code level. This means that
developers and operations need to be given more responsibility for
security, training in security principles and practices, and tools to
help them build and run secure systems.

Shift Security Left | 19

Developers need to learn how to identify and mitigate security risks
in design through threat modeling (looking at holes or weaknesses
in the design from an attacker’s perspective), and how to take
advantage of security features in their application frameworks and
security libraries to prevent common security vulnerabilities like
injection attacks. The OWASP and SAFECode communities provide
a lot of useful, free tools and frameworks and guidance to help
developers with understanding and solving common application
security problems in any kind of system.

OWASP Proactive Controls
The OWASP Proactive Controls is a set of secure development prac‐
tices, guidelines, and techniques that you should follow to build
secure applications. These practices will help you to shift security
earlier into design, coding, and testing:

Verify for security early and often
Instead of leaving security testing and checks to the end of a
project, include security in automated testing in Continuous
Integration and Continuous Delivery.

Parameterize queries
Prevent SQL injection by using a parameterized database inter‐
face.

Encode data
Protect the application from XSS and other injection attacks by
safely encoding data before passing it on to an interpreter.

Validate all inputs
Treat all data as untrusted. Validate parameters and data ele‐
ments using white listing techniques. Get to know and love
regex.

Implement identity and authentication controls
Use safe, standard methods and patterns for authentication and
identity management. Take advantage of OWASP’s Cheat Sheets
for authentication, session management, password storage, and
forgotten passwords if you need to build these functions in on
your own.

20 | Chapter 3: Keys to Injecting Security into DevOps

https://www.owasp.org/
http://www.safecode.org/
https://www.owasp.org/index.php/OWASP_Proactive_Controls

Implement appropriate access controls
Follow a few simple rules when implementing access control fil‐
ters. Deny access by default. Implement access control in a cen‐
tral filter library—don’t hardcode access control checks
throughout the application. And remember to code to the activ‐
ity instead of to the role.

Protect data
Understand how to use crypto properly to encrypt data at rest
and in transit. Use proven encryption libraries like Google’s
KeyCzar and Bouncy Castle.

Implement logging and intrusion detection
Design your logging strategy with intrusion detection and for‐
ensics in mind. Instrument key points in your application and
make logs safe and consistent.

Take advantage of security frameworks and libraries
Take advantage of the security features of your application
framework where possible, and fill in with special-purpose
security libraries like Apache Shiro or Spring Security where
you need to.

Error and exception handling
Pay attention to error handling and exception handling
throughout your application. Missed error handling can lead to
runtime problems, including catastrophic failures. Leaking
information in error handling can provide clues to attackers;
don’t make their job easier than it already is.

Secure by Default
Shifting Security Left begins by making it easy for engineers to write
secure code and difficult for them to make dangerous mistakes, wir‐
ing secure defaults into their templates and frameworks, and build‐
ing in the proactive controls listed previously. You can prevent SQL
injection at the framework level by using parameterized queries,
hide or simplify the output encoding work needed to protect appli‐
cations from XSS attacks, enforce safe HTTP headers, and provide
simple and secure authentication functions. You can do all of this in
ways that are practically invisible to the developers using the frame‐
work.

Secure by Default | 21

Making software and software development secure by default is core
to the security programs at organizations like Google, Facebook,
Etsy, and Netflix. Although the pay back can be huge, it demands a
fundamental change in the way that infosec and development work
together. It requires close collaboration between security engineers
and software engineers, strong application security knowledge and
software design, and coding skills to build security protection into
frameworks and templates in ways that are safe and easy to use.
Most important, it requires a commitment from developers and
their managers to use these frameworks wherever possible.

Most of us aren’t going to be able to start our application security
programs here; instead, we’ll need to work our way back to the
beginning and build more security into later stages.

Making Security Self-Service
Engineers in DevOps shops work in a self-service environment.
Automated Continuous Integration servers provide self-service
builds and testing. Cloud platforms and virtualization technologies
like Vagrant provide self-service, on-demand provisioning. Con‐
tainer technologies like Docker offer simple, self-service packaging
and shipping.

Security needs to be made available to the team in the same way:
convenient, available when your engineers need it, seamless, and
efficient.

Don’t get in their way. Don’t make developers wait for answers or
stop work in order to get help. Give them security tools that they
can use and understand and that they can provision and run them‐
selves. And ensure that those tools fit into how they work: into Con‐
tinuous Integration and Continuous Delivery, into their IDEs as
they enter code, into code pull requests. In other words, ensure that
tests and checks provide fast, clear feedback.

At Twitter, security checks are run automatically every time a devel‐
oper makes a change. Tools like Brakeman check the code for secu‐
rity vulnerabilities, and provide feedback directly to the developer if
something is found, explaining what is wrong, why it is wrong, and
how to fix it. Developers have a “bullshit” button to reject false posi‐

22 | Chapter 3: Keys to Injecting Security into DevOps

http://brakemanscanner.org/

2 “Put your Robots to Work: Security Automation at Twitter.” OWASP AppSec USA
2012, https://vimeo.com/54250716

tive findings. Security checks become just another part of their cod‐
ing cycle.2

Using Infrastructure as Code
Another key to DevOps is Infrastructure as Code: managing infra‐
structure configuration in code using tools like Ansible, Chef, Pup‐
pet, and Salt. This speeds up and simplifies provisioning and
configuring systems, especially at scale. It also helps to ensure con‐
sistency between systems and between test and production, stand‐
ardizing configurations and minimizing configuration drift, and
reduces the chance of an attacker finding and exploiting a one-off
mistake.

Treating infrastructure provisioning and configuration as a software
problem and following software engineering practices like version
control, peer code reviews, refactoring, static analysis, automated
unit testing and Continuous Integration, and validating and deploy‐
ing changes through the same kind of Continuous Delivery pipe‐
lines makes configuration changes repeatable, auditable, and safer.

Security teams also can use Infrastructure as Code to program secu‐
rity policies directly into configuration, continuously audit and
enforce policies at runtime, and to patch vulnerabilities quickly and
safely.

Using Infrastructure as Code | 23

https://vimeo.com/54250716

UpGuard: From Infrastructure to Secure Code
UpGuard is a service that helps you to automatically capture con‐
figuration information into tests and code, and then establish poli‐
cies and monitor compliance against those policies. UpGuard
discovers configuration details from Linux and Windows servers,
network devices and cloud services, and tracks changes to this
information over time. You can use it as a Tripwire-like detective
change control tool to alert you to unauthorized changes to config‐
uration or to audit configuration management activities.

You can also visualize the configuration of your systems and iden‐
tify inconsistencies between them. And you can establish policies
for different systems or types of systems by creating fine-grained
automated tests or assertions to ensure that the proper versions of
packages are installed, that specific files and users and directories
are set up correctly, that ports are opened or closed, and that pro‐
cesses are running.

UpGuard automatically creates directives for configuration man‐
agement tools, including Ansible, Chef, Puppet, Microsoft Win‐
dows PowerShell DSC, and Docker, to bring your infrastructure
configuration into code with a prebuilt test framework.

It continuously assesses the risk of your configuration, assigning a
score based on compliance (test coverage and pass ratios as well as
compliance with external benchmarks like CIS), integrity (tracking
of unauthorized changes to configuration), and security (based on
scanning for vulnerabilities—UpGuard includes a community-
based vulnerability scanner and can integrate with other scanners).

Iterative, Incremental Change to Contain Risks
DevOps and Continuous Delivery reduce the risk of change by mak‐
ing many small, incremental changes instead of a few “big bang”
changes.

Changing more often exercises and proves out your ability to test
and successfully push out changes, enhancing your confidence in
your build and release processes. Additionally, it forces you to auto‐
mate and streamline these processes, including configuration man‐

24 | Chapter 3: Keys to Injecting Security into DevOps

https://www.upguard.com/

3 http://www.slideshare.net/jallspaw/go-or-nogo-operability-and-contingency-planning-at-
etsycom

agement and testing and deployment, which makes them more
repeatable, reliable, and auditable.

Smaller, incremental changes are safer by nature. Because the scope
of any change is small and generally isolated, the “blast radius” of
each change is contained. Mistakes are also easier to catch because
incremental changes made in small batches are easier to review and
understand upfront, and require less testing.

When something does go wrong, it is also easier to understand what
happened and to fix it, either by rolling back the change or pushing
a fix out quickly using the Continuous Delivery pipeline.

It’s also important to understand that in DevOps many changes are
rolled out dark. That is, they are disabled by default, using runtime
“feature flags” or “feature toggles”. These features are usually
switched on only for a small number of users at a time or for a short
period, and in some cases only after an “operability review” or pre‐
mortem review to make sure that the team understands what to
watch for and is prepared for problems.3

Another way to minimize the risk of change in Continuous Delivery
or Continuous Deployment is canary releasing. Changes can be rol‐
led out to a single node first, and automatically checked to ensure
that there are no errors or negative trends in key metrics (for exam‐
ple, conversion rates), based on “the canary in a coal mine” meta‐
phor. If problems are found with the canary system, the change is
rolled back, the deployment is canceled, and the pipeline shut down
until a fix is ready to go out. After a specified period of time, if the
canary is still healthy, the changes are rolled out to more servers,
and then eventually to the entire environment.

Use the Speed of Continuous Delivery to Your
Advantage
The speed at which DevOps moves can seem scary to infosec ana‐
lysts and auditors. But security can take advantage of the speed of
delivery to respond quickly to security threats and deal with vulner‐
abilities.

Use the Speed of Continuous Delivery to Your Advantage | 25

http://www.slideshare.net/jallspaw/go-or-nogo-operability-and-contingency-planning-at-etsycom
http://www.slideshare.net/jallspaw/go-or-nogo-operability-and-contingency-planning-at-etsycom
http://martinfowler.com/articles/feature-toggles.html

A major problem that almost all organizations face is that even
when they know that they have a serious security vulnerability in a
system, they can’t get the fix out fast enough to stop attackers from
exploiting the vulnerability.

The longer vulnerabilities are exposed, the more likely the system
will be, or has already been, attacked. WhiteHat Security, which pro‐
vides a service for scanning websites for security vulnerabilities, reg‐
ularly analyzes and reports on vulnerability data that it collects.
Using data from 2013 and 2014, WhiteHat found that 35 percent of
finance and insurance websites are “always vulnerable,” meaning
that these sites had at least one serious vulnerability exposed every
single day of the year. The stats for other industries and government
organizations were even worse. Only 25 percent of finance and
insurance sites were vulnerable for less than 30 days of the year. On
average, serious vulnerabilities stayed open for 739 days, and only 27
percent of serious vulnerabilities were fixed at all, because of the
costs and risks and overhead involved in getting patches out.

Continuous Delivery, and collaboration between developers and
operations and infosec staff working closely together, can close vul‐
nerability windows. Most security patches are small and don’t take
long to code. A repeatable, automated Continuous Delivery pipeline
means that you can figure out and fix a security bug or download a
patch from a vendor, test to make sure that it won’t introduce a
regression, and get it out quickly, with minimal cost and risk. This is
in direct contrast to “hot fixes” done under pressure that have led to
failures in the past.

Speed also lets you make meaningful risk and cost trade-off deci‐
sions. Recognizing that a vulnerability might be difficult to exploit,
you can decide to accept the risk temporarily, knowing that you
don’t need to wait for several weeks or months until the next release,
and that the team can respond quickly with a fix if it needs to.

Speed of delivery now becomes a security advantage instead of a
source of risk.

The Honeymoon Effect
There appears to be another security advantage to moving fast in
DevOps. Recent research shows that smaller, more frequent changes
can make systems safer from attackers by means of the “Honey‐

26 | Chapter 3: Keys to Injecting Security into DevOps

https://www.whitehatsec.com/press-releases/featured/2015/05/21/pressrelease.html
http://www.acsac.org/2010/openconf/modules/request.php?module=oc_program&action=view.php&a=&id=69&type=2

moon Effect”: older software that is more vulnerable is easier to
attack than software that has recently been changed.

Attacks take time. It takes time to identify vulnerabilities, time to
understand them, and time to craft and execute an exploit. This is
why many attacks are made against legacy code with known vulner‐
abilities. In an environment where code and configuration changes
are rolled out quickly and changed often, it is more difficult for
attackers to follow what is going on, to identify a weakness, and to
understand how to exploit it. The system becomes a moving target.
By the time attackers are ready to make their move, the code or con‐
figuration might have already been changed and the vulnerability
might have been moved or closed.

To some extent relying on change to confuse attackers is “security
through obscurity,” which is generally a weak defensive position. But
constant change should offer an edge to fast-moving organizations,
and a chance to hide defensive actions from attackers who have
gained a foothold in your system, as Sam Guckenheimer at Micro‐
soft explains:

If you’re one of the bad guys, what do you want? You want a static
network with lots of snowflakes and lots of places to hide that aren’t
touched. And if someone detects you, you want to be able to spot
the defensive action so that you can take countermeasures.... With
DevOps, you have a very fast, automated release pipeline, you’re
constantly redeploying. If you are deploying somewhere on your
net, it doesn’t look like a special action taken against the attackers.

The Honeymoon Effect | 27

http://www.acsac.org/2010/openconf/modules/request.php?module=oc_program&action=view.php&a=&id=69&type=2
http://www.cio.com/article/3042893/security/is-devops-good-or-bad-for-security.html

CHAPTER 4

Security as Code: Security Tools
and Practices in

Continuous Delivery

Security as Code is about building security into DevOps tools and
practices, making it an essential part of the tool chains and work‐
flows. You do this by mapping out how changes to code and infra‐
structure are made and finding places to add security checks and
tests and gates without introducing unnecessary costs or delays.

Security as Code uses Continuous Delivery as the control backbone
and the automation engine for security and compliance. Let’s begin
by briefly defining Continuous Delivery, and then walk through the
steps on how to build security into Continuous Delivery.

Continuous Delivery
Agile ideas and principles—working software over documentation,
frequent delivery, face-to-face collaboration, and a focus on techni‐
cal excellence and automation—form the foundation of DevOps.
And Continuous Delivery, which is the control framework for
DevOps, is also built on top of a fundamental Agile development
practice: Continuous Integration.

In Continuous Integration, each time a developer checks in a code
change, the system is automatically built and tested, providing fast
and frequent feedback on the health of the code base. Continuous
Delivery takes this to the next step.

29

Continuous Delivery is not just about automating the build and unit
testing, which are things that the development team already owns.
Continuous Delivery is provisioning and configuring test environ‐
ments to match production as closely as possible—automatically.
This includes packaging the code and deploying it to test environ‐
ments; running acceptance, stress, and performance tests, as well as
security tests and other checks, with pass/fail feedback to the team,
all automatically; and auditing all of these steps and communicating
status to a dashboard. Later, you use the same pipeline to deploy the
changes to production.

Continuous Delivery is the backbone of DevOps and the engine that
drives it. It provides an automated framework for making software
and infrastructure changes, pushing out software upgrades, patches,
and changes to configuration in a way that is repeatable, predictable,
efficient, and fully audited.

Putting a Continuous Delivery pipeline together requires a high
degree of cooperation between developers and operations, and a
much greater shared understanding of how the system works, what
production really looks like, and how it runs. It forces teams to
begin talking to one another, exposing and exploring details about
how they work and how they want to work.

There is a lot of work that needs to be done: understanding depen‐
dencies, standardizing configurations, and bringing configuration
into code; cleaning up the build (getting rid of inconsistencies, hard‐
coding, and jury rigging); putting everything into version control—
application code and configuration, binary dependencies, infra‐
structure configuration (recipes, manifests, playbooks, CloudFor‐
mation templates, and Dockerfiles), database schemas, and
configurations for the Continuous Integration/Continuous Delivery
pipeline itself; and, finally, automating testing (getting all of the
steps for deployment together and automating them carefully). And
you may need to do all of this in a heterogeneous environment, with
different architectures and technology platforms and languages.

30 | Chapter 4: Security as Code: Security Tools and Practices in Continuous Delivery

Continuous Delivery at London Multi-Asset
Exchange
The London Multi-Asset Exchange (LMAX) is a highly regulated FX
retail market in the United Kingdom, where Dave Farley (coauthor
of the book Continuous Delivery) helped pioneer the model of Con‐
tinuous Delivery.

LMAX’s systems were built from scratch following Agile best practi‐
ces: TDD, pair programming, and Continuous Integration. But they
took this further, automatically deploying code to integration,
acceptance, and performance testing environments, building up a
Continuous Delivery pipeline.

LMAX has made a massive investment in automated testing. Each
build runs through 25,000 unit tests with code coverage failure, sim‐
ple code analysis (using tools like Findbugs, PMD, and custom
architectural dependency checks) and automated integration sanity
checks. All of these tests and checks must pass for every piece of
code submitted.

The last good build is automatically picked up and promoted to
integration and acceptance testing, during which more than 10,000
end-to-end tests are run on a test cluster, including API-level
acceptance tests, multiple levels of performance tests, and fault
injection tests that selectively fail parts of the system and verify that
the system recovers correctly without losing data. More than 24
hours’ worth of tests are run in parallel in less than 1 hour.

If all of the tests and reviews pass, the build is tagged. All builds are
kept in a secure repository, together with dependent binaries (like
the Java Runtime). Code and tests are tracked in version control.

QA can take a build to conduct manual exploratory testing or other
kinds of tests. Operations can then pull a tagged build from the
development repository to their separate secure production reposi‐
tory and use the same automated tools to deploy to production.
Releases to production are scheduled every two weeks, on a Satur‐
day, outside of trading hours.

This is Continuous Delivery, not Continuous Deployment as fol‐
lowed at Amazon or Etsy. But it still takes advantage of the same
type of automation and controls, even though LMAX created a lot of

Continuous Delivery at London Multi-Asset Exchange | 31

the tooling on its own using scripts and simple workflow conven‐
tions, before today’s DevOps tools were available.

Injecting Security into Continuous Delivery
Before you can begin adding security checks and controls, you need
to understand the workflows and tools that the engineering teams
are using:

• What happens before and when a change is checked in?
• Where are the repositories? Who has access to them?
• How do changes transition from check-in to build to Continu‐

ous Integration and unit testing, to functional and integration
testing, and to staging and then finally to production?

• What tests are run? Where are the results logged?
• What tools are used? How do they work?
• What manual checks or reviews are performed and when?

And how can you take advantage of all of this for security and com‐
pliance purposes?

Let’s map out the steps involved from taking a change from check-in
to production and identify where we can insert security checks and
controls. See Figure 4-1 for a model that explains how and where to
add security checks into a Continuous Delivery workflow.

32 | Chapter 4: Security as Code: Security Tools and Practices in Continuous Delivery

Figure 4-1. Security checks and controls in engineering workflows

Injecting Security into Continuous Delivery | 33

1 For software that is distributed externally, this should involve signing the code with a
code-signing certificate from a third-party CA. For internal code, a hash should be
enough to ensure code integrity.

Precommit
These are the steps before and until a change to software or configu‐
ration is checked in to the source code repo. Additional security
checks and controls to be added here include the following:

• Lightweight, iterative threat modeling and risk assessments
• Static analysis (SAST) checking in the engineer’s IDE
• Peer code reviews (for defensive coding and security vulnerabil‐

ities)

Commit Stage (Continuous Integration)
This is automatically triggered by a check in. In this stage, you build
and perform basic automated testing of the system. These steps
return fast feedback to developers: did this change “break the
build”? This stage needs to complete in at most a few minutes. Here
are the security checks that you should include in this stage:

• Compile and build checks, ensuring that these steps are clean,
and that there are no errors or warnings

• Software Component Analysis in build, identifying risk in third-
party components

• Incremental static analysis scanning for bugs and security vul‐
nerabilities

• Alerting on high-risk code changes through static analysis
checks or tests

• Automated unit testing of security functions, with code cover‐
age analysis

• Digitally signing binary artifacts and storing them in secure
repositories1

34 | Chapter 4: Security as Code: Security Tools and Practices in Continuous Delivery

Acceptance Stage
This stage is triggered by a successful commit. The latest good com‐
mit build is picked up and deployed to an acceptance test environ‐
ment. Automated acceptance (functional, integration, performance,
and security) tests are executed. To minimize the time required,
these tests are often fanned out to different test servers and executed
in parallel. Following a “fail fast” approach, the more expensive and
time-consuming tests are left until as late as possible in the test
cycle, so that they are only executed if other tests have already
passed.

Security controls and tests in this stage include the following:

• Secure, automated configuration management and provisioning
of the runtime environment (using tools like Ansible, Chef,
Puppet, Salt, and/or Docker). Ensure that the test environment
is clean and configured to match production as closely as possi‐
ble.

• Automatically deploy the latest good build from the binary arti‐
fact repository.

• Smoke tests (including security tests) designed to catch mistakes
in configuration or deployment.

• Targeted dynamic scanning (DAST).
• Automated functional and integration testing of security fea‐

tures.
• Automated security attacks, using Gauntlt or other security

tools.
• Deep static analysis scanning (can be done out of band).
• Fuzzing (of APIs, files). This can be done out of band.
• Manual pen testing (out of band).

Production Deployment and Post-Deployment
If all of the previous steps and tests pass, the change is ready to be
deployed to production, pending manual review/approvals and
scheduling (in Continuous Delivery) or automatically (in Continu‐
ous Deployment). Additional security checks and controls are
needed in production deployment and post-deployment:

Injecting Security into Continuous Delivery | 35

• Secure, automated configuration management and provisioning
of the runtime environment

• Automated deployment and release orchestration (authorized,
repeatable, and auditable)

• Post-deployment smoke tests
• Automated runtime asserts and compliance checks (monkeys)
• Production monitoring/feedback
• Runtime defense
• Red Teaming
• Bug bounties
• Blameless postmortems (learning from failure)

Depending on the risk profile of your organization and systems, you
will need to implement at least some of these practices and controls.
Leaders in this space already do most of them.

Now, let’s look more closely at these security controls and practices
and some of the tools that you can use, starting with design.

Secure Design in DevOps
Secure design in DevOps begins by building on top of secure libra‐
ries and frameworks—building security in upfront and trying to
make it invisible to developers. Security risk assessments also need
to be integrated into design as it changes and as part of managing
the software supply chain: the open source and third-party compo‐
nents and frameworks that teams use to assemble important parts of
any system.

Risk Assessments and Lightweight Threat Modeling
We’ve already looked at the essential problem of design in rapidly
moving DevOps environments. These teams want to deliver to real
users early and often so that they can refine the feature set and the
design in response to production feedback. This means that the
design must be lightweight at the outset, and it is constantly chang‐
ing based on feedback.

In Continuous Deployment, there is no Waterfall handoff of design
specifications to coders—there may not be any design specifications

36 | Chapter 4: Security as Code: Security Tools and Practices in Continuous Delivery

2 “Agile Security – Field of Dreams.” Laksh Raghavan, PayPal, RSA Conference 2016.
https://www.rsaconference.com/events/us16/agenda/sessions/2444/agile-security-field-of-
dreams

3 At Netflix, where they follow a similar risk-assessment process, this is called “the paved
road,” because the path ahead should be smooth, safe, and predictable.

at all that can be reviewed as part of a risk assessment. When there is
minimal design work being done, and “the code is the design,”
where and how do you catch security problems in design?

You begin upfront by understanding that even if the design is only
roughed out and subject to change, the team still needs to commit to
a set of tools and the runtime stack to get going. This is when threat
modeling—looking at the design from an attacker’s perspective,
searching for gaps or weaknesses in security controls and defenses—
needs to start.

At PayPal, for example, every team must go through an initial risk
assessment, filling out an automated risk questionnaire whenever it
begins work on a new app or microservice.2 One of the key decision
points is whether the team is using existing languages and frame‐
works that have already been vetted.3 Or, are they introducing some‐
thing new to the organization, technologies that the security team
hasn’t seen before? There is a big difference in risk between “just
another web or mobile app” built on an approved platform, and a
technical experiment using new languages and tools.

Here are some of the issues to understand and assess in an upfront
risk review:

• Do you understand how to use the language(s) and frameworks
safely? What security protections are offered in the framework?
What needs to be added to make it simple for developers to “do
the right thing” by default?

• Is there good Continuous Delivery toolchain support for the
language(s) and framework, including SAST checking or IAST
tooling, and dependency management analysis capabilities to
catch vulnerabilities in third-party and open source libraries?

• Is sensitive and confidential data being used? What data is
needed, how is it to be handled, and what needs to be audited?
Does it need to be stored, and, if so, how? Do you need to make

Secure Design in DevOps | 37

https://www.rsaconference.com/events/us16/agenda/sessions/2444/agile-security-field-of-dreams
https://www.rsaconference.com/events/us16/agenda/sessions/2444/agile-security-field-of-dreams

considerations for encryption, tokenization and masking, access
control, and auditing?

• Do you understand the trust boundaries between this app/
service and others: where do controls need to be enforced
around authentication, access control, and data quality? What
assumptions are being made in the design?

These questions are especially important in microservices environ‐
ments, in which teams push for flexibility to use the right tool for
the job: when it is not always easy to understand call-chain depen‐
dencies—when you can’t necessarily control who calls you and what
callers expect from your service, and when you can’t control what
downstream services do, or when or how they will be changed. For
microservices, you need to understand the following:

• What assumptions are you making about callers? Where and
how is authentication and authorization done? How can you be
sure?

• Can you trust the data that you are getting from another ser‐
vice? Can other services trust the data that you are providing to
them?

• What happens if a downstream service fails, or times out, or
returns an incomplete or inconsistent result?

After the upfront assessment, threat modeling should become much
simpler for most changes, because most changes will be small, incre‐
mental, and therefore low risk. You can assess risk inexpensively,
informally, and iteratively by getting the team to ask itself a few
questions as it is making changes:

• Are you changing anything material about the tooling or stack?
Are you introducing or switching to a new language, changing
the backend store, or upgrading or replacing your application
framework? Because design is done fast and iteratively, teams
might find that their initial architectural approach does not
hold up, and they might need to switch out all or part of the
technology platform. This can require going back and reassess‐
ing risk from the start.

• How are you affecting the attack surface of the system? Are you
just adding a new field or another form? Or, are you opening up

38 | Chapter 4: Security as Code: Security Tools and Practices in Continuous Delivery

new ports or new APIs, adding new data stores, making calls
out to new services?

• Are you changing authentication logic or access control rules or
other security plumbing?

• Are you adding data elements that are sensitive or confidential?
Are you changing code that has anything to do with secrets or
sensitive or confidential data?

Answering these questions will tell you when you need to look more
closely at the design or technology, or when you should review and
verify trust assumptions. The key to threat modeling in DevOps is
recognizing that because design and coding and deployment are
done continuously in a tight, iterative loop, you will be caught up in
the same loops when you are assessing technical risks. This means
that you can make—and you need to make—threat modeling effi‐
cient, simple, pragmatic, and fast.

Securing Your Software Supply Chain
Another important part of building in security upfront is to secure
your software supply chain, minimizing security risks in the soft‐
ware upon which your system is built. Today’s Agile and DevOps
teams take extensive advantage of open source libraries to reduce
development time and costs. This means that they also inherit qual‐
ity problems and security vulnerabilities from other people’s code.

According to Sonatype, which runs the Central Repository, the
world’s largest repository for open source software

80 percent of the code in today’s applications comes from libraries
and frameworks

and a lot of this code has serious problems in it. Sonatype looked at
17 billion download requests from 106,000 different organizations
in 2014. Here’s what it found:

Large software and financial services companies are using an aver‐
age of 7,600 suppliers. These companies sourced an average of
240,000 software “parts” in 2014, of which 15,000 included known
vulnerabilities.

More than 50,000 of the software components in the Central Repos‐
itory have known security vulnerabilities. One in every 16 download
requests is for software that has at least one known security vulnera‐

Secure Design in DevOps | 39

http://www.sonatype.com/news/study-of-106-000-software-development-organizations-reveals-that-the-way-the-world-creates-software-is-broken
http://www.sonatype.com/news/study-of-106-000-software-development-organizations-reveals-that-the-way-the-world-creates-software-is-broken

bility. On average, 50 new critical vulnerabilities in open source soft‐
ware are reported every day.

Scared yet? You should be. You need to know what open source code
is included in your apps and when this changes, and review this
code for known security vulnerabilities.

Luckily, you can do this automatically by using Software Compo‐
nent Analysis (SCA) tools like OWASP’s Dependency Check project
or commercial tools like Sonatype’s Nexus Lifecycle or SourceClear.
You can wire these tools into your build or Continuous Integration/
Continuous Delivery pipeline to automatically inventory open
source dependencies, identify out-of-date libraries and libraries with
known security vulnerabilities, and fail the build automatically if
serious problems are found. By building up a bill of materials for
every system, you can prepare for vulnerabilities like Heartbleed or
DROWN—you can quickly determine if you are exposed and what
you need to fix.

These tools also can alert you when new dependencies are detected
so that you can create a workflow to review them.

OWASP Dependency Check
OWASP’s Dependency Check is an open source scanner that cata‐
logs open source components used in an application. It works for
Java, .NET, Ruby (gemspec), PHP (composer), Node.js and Python,
and some C/C++ projects. Dependency Check integrates with com‐
mon build tools (including Ant, Maven, and Gradle) and CI servers
like Jenkins.

Dependency Check reports on any components with known vul‐
nerabilities reported in NIST’s National Vulnerability Database and
gets updates from the NVD data feeds.

Other popular open source dependency checking tools include the
following:

• Bundler Audit for Ruby
• Retire.js for Javascript
• SafeNuGet for NuGet libraries

40 | Chapter 4: Security as Code: Security Tools and Practices in Continuous Delivery

http://www.sonatype.com/nexus-lifecycle
https://srcclr.com/
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://github.com/rubysec/bundler-audit
http://retirejs.github.io/retire.js/
https://www.owasp.org/index.php/OWASP_SafeNuGet

4 Shannon Lientz, http://www.devsecops.org/blog/2016/1/16/fewer-better-suppliers

If you are using containers like Docker in production (or even in
development and test) you should enforce similar controls over
dependencies in container images. Even though Docker’s Project
Nautilus scans images in official repos for packages with known vul‐
nerabilities, you should ensure that all Docker containers are scan‐
ned, using a tool like OpenSCAP or Clair, or commercial services
from Twistlock, FlawCheck, or Black Duck Hub.

Your strategic goal should be to move to “fewer, better suppliers”
over time, simplifying your supply chain in order to reduce mainte‐
nance costs and security risks. Sonatype has developed a free calcu‐
lator that will help developers—and managers—understand the cost
and risks that you inherit over time from using too many third-
party components.4.

But you need to recognize that even though it makes good sense in
the long term, getting different engineering teams to standardize on
using a set of common components won’t be easy, especially for
microservices environments in which developers are granted the
freedom to use the right tools for the job, selecting technologies
based on their specific requirements, or even on their personal
interests.

Begin by standardizing on the lowest layers—the kernel, OS, and
VMs—and on general-purpose utility functions like logging and
metrics collection, which need to be used consistently across apps
and services.

Writing Secure Code in Continuous Delivery
DevOps practices emphasize the importance of writing good code:
code that works and that is easy to change. You can take advantage
of this in your security program, using code reviews and adding
automated static analysis tools to catch common coding mistakes
and security vulnerabilities early.

Writing Secure Code in Continuous Delivery | 41

http://www.devsecops.org/blog/2016/1/16/fewer-better-suppliers
http://www.sonatype.com/calculator/
http://www.sonatype.com/calculator/

Using Code Reviews for Security
Peer code reviews are a common engineering practice at many Agile
and DevOps shops, and they are mandatory at leading organizations
like Google, Amazon, Facebook, and Etsy.

Peer code reviews are generally done to share information across the
team and to help ensure that code is maintainable, to reinforce con‐
ventions and standards, and to ensure that frameworks and patterns
are being followed correctly and consistently. This makes code eas‐
ier to understand and safer to change, and in the process, reviewers
often find bugs that need to be fixed.

You can also use code reviews to improve security in some impor‐
tant ways.

First, code reviews increase developer accountability and provide
transparency into changes. Mandatory reviews ensure that a change
can’t be pushed out without at least one other person being aware of
what was done and why it was done. This significantly reduces the
risk of insider threats; for example, someone trying to introduce a
logic bomb or a back door in the code. Just knowing that their code
will be reviewed also encourages developers to be more careful in
their work, improving the quality of the code.

Transparency into code reviews can be ensured using code review
tools like

• Gerrit
• Phabricator
• Atlassian Crucible

Frameworks and other high-risk code including security features
(authentication workflows, access control, output sanitization,
crypto) and code that deals with money or sensitive data require
careful, detailed review of the logic. This code must work correctly,
including under error conditions and boundary cases.

Encouraging developers to look closely at error and exception han‐
dling and other defensive coding practices, including careful param‐
eter validation, will go a long way to improving the security of most
code as well as improving the runtime reliability of the system.

42 | Chapter 4: Security as Code: Security Tools and Practices in Continuous Delivery

https://code.google.com/p/gerrit/
http://phabricator.org/
https://www.atlassian.com/software/crucible/overview/

With just a little training, developers can learn to look out for bad
practices like hardcoding credentials or attempts at creating custom
crypto. With more training, they will be able to catch more vulnera‐
bilities, early on in the process.

In some cases (for example, session management, secrets handling,
or crypto), you might need to bring in a security specialist to exam‐
ine the code. Developers can be encouraged to ask for security code
reviews. You can also identify high-risk code through simple static
code scanning, looking for specific strings such as credentials and
dangerous functions like crypto functions and crypto primitives.

To identify high-risk code, Netflix maps out call sequences for
microservices. Any services that are called by many other services or
that fan out to many other services are automatically tagged as high
risk. At Etsy, as soon as high-risk code is identified through reviews
or scanning, they hash it and create a unit test that automatically
alerts the security team when the code hash value has been changed.

Code review practices also need to be extended to infrastructure
code—to Puppet manifests and Chef cookbooks and Ansible play‐
books, Dockerfiles, and CloudFormation templates.

What About Pair Programming?
Pair programming, where developers write code together, one devel‐
oper “driving” at the keyboard, and the other acting as the navigator,
helping to guide the way and looking out for trouble ahead, is a
great way to bring new team members up to speed, and it is proven
to result in better, tighter, and more testable code. But pairing will
miss important bugs, including security vulnerabilities, because pair
programming is more about joint problem solving, navigating
toward a solution rather than actively looking for mistakes or hunt‐
ing for bugs.

Even in disciplined XP environments, you should do separate
security-focused code reviews for high-risk code.

SAST: in IDE, in Continuous Integration/Continuous
Delivery
Another way to improve code security is by scanning code for secu‐
rity vulnerabilities using automated static analysis software testing
(SAST) tools. These tools can find subtle mistakes that reviewers

Writing Secure Code in Continuous Delivery | 43

http://blog.smartbear.com/programming/does-pair-programming-obviate-the-need-for-code-review/

will sometimes miss, and that might be hard to find through other
kinds of testing.

But rather than relying on a centralized security scanning factory
run by infosec, DevOps organizations like Twitter and Netflix
implement self-service security scanning for developers, fitting
SAST scanning directly into different places along the engineering
workflow.

Developers can take advantage of built-in checkers in their IDE,
using plug-ins like FindBugs or Find Security Bugs, or commercial
plug-ins from Coverity, Klocwork, HPE Fortify, Checkmarx, or
Cigital’s SecureAssist to catch security problems and common cod‐
ing mistakes as they write code.

You can also wire incremental static analysis precommit and com‐
mit checks into Continuous Integration to catch common mistakes
and antipatterns quickly by only scanning the code that was
changed. Full system scanning might still be needed to catch inter‐
procedural problems that some incremental scans can’t find. You
will need to run these scans, which can take several hours or some‐
times days to run on a large code base, outside of the pipeline. But
the results can still be fed back to developers automatically, into
their backlog or through email or other notification mechanisms.

Different kinds of static code scanning tools offer different value:

• Tools that check for code consistency, maintainability, and
clarity (PMD and Checkstyle for Java, Ruby-lint for Ruby) help
developers to write code that is easier to understand, easier to
change, easier to review, and safer to change.

• Tools that look for common coding bugs and bug patterns
(tools like FindBugs and RuboCop) will catch subtle logic mis‐
takes and errors that could lead to runtime failures or security
vulnerabilities.

• Tools that identify security vulnerabilities through taint analysis,
control flow and data flow analysis, pattern analysis, and other
techniques (Find Security Bugs, Brakeman) can find many com‐
mon security issues such as mistakes in using crypto functions,
configuration errors, and potential injection vulnerabilities.

You should not rely on only one tool—even the best tools will catch
only some of the problems in your code. Good practice would be to

44 | Chapter 4: Security as Code: Security Tools and Practices in Continuous Delivery

http://itrevolution.com/heres-how-the-amazing-twitter-infosec-team-helps-devops/

run at least one of each kind to look for different problems in the
code, as part of an overall code quality and security program.

There are proven SAST tools available today for popular languages
like Java, C/C++, and C#, as well as for common frameworks like
Struts and Spring and .NET, and even for some newer languages and
frameworks like Ruby on Rails. But it’s difficult to find tool support
for other new languages such as Golang, and it’s especially difficult
to find for dynamic scripting languages. Most static analyzers, espe‐
cially open source tools, for these languages are still limited to lint‐
ing and basic checking for bad practices, which helps to make for
better code but aren’t enough to ensure that your code is secure.

Static analysis checking tools for configuration management lan‐
guages (like Foodcritic for Chef or puppet-lint for Puppet) are also
limited to basic checking for good coding practices and some com‐
mon semantic mistakes. They help to ensure that the code works,
but they won’t find serious security problems in your system config‐
uration.

SonarQube
SonarQube wraps multiple SAST scanning tools for multiple lan‐
guages. It originally wrapped open source tools, and now includes
proprietary checkers written by SonarSource. Some of these check‐
ers, for languages like Objective-C and Swift, C/C++, and other leg‐
acy languages are only available in the commercial version. But
there is good support in the open source version of SonarQube for
Java, JavaScript, PHP, and other languages like Erlang.

One of SonarQube’s main purposes is to assess and track technical
debt in applications. This means that most of the code checkers are
focused on maintainability (for style and coding conventions) as
well as for coding correctness and common bug patterns. However,
SonarSource has recently started to include more security-specific
checkers, especially for Java.

SonarQube runs in Continuous Integration/Continuous Delivery,
with plug-ins for Jenkins and GitHub. You can set quality gates and
automatically notify the team when the quality gates fail. It collects
metrics and provides reports and dashboards to analyze these met‐
rics over time, to identify where bugs are clustered and to compare
metrics across projects.

Writing Secure Code in Continuous Delivery | 45

http://www.sonarqube.org/

To ensure that the feedback loops are effective, it’s important to tune
these tools to minimize false positives and provide developers with
clear, actionable feedback on real problems that need to be fixed.
Noisy checkers that generate a lot of false positives and that need
review and triage can still be run periodically and the results fed
back to development after they have been picked through.

Security Testing in Continuous Delivery
Security testing needs to be moved directly into Continuous Integra‐
tion and Continuous Delivery in order to verify security as soon as
changes are made. This could mean wiring application scanning and
fuzzing into the Continuous Delivery pipeline. It could also mean
taking advantage of work that the development team has already
done to create an automated test suite, adding security checks into
unit testing, and automating security attacks as part of integration
and functional testing.

Although you need to run penetration tests and bug bounty pro‐
grams outside of Continuous Delivery, they still provide valuable
feedback into the automated testing program. You need to track all
of the vulnerabilities found in scanning and testing—inside and out‐
side of the pipeline, in a vulnerability manager.

Dynamic Scanning (DAST)
Black box Dynamic Analysis Security Testing (DAST) tools and
services are useful for testing web and mobile apps, but they don’t
always play nicely in Continuous Integration or Continuous Deliv‐
ery. Most DAST tools are designed to be run by security analysts or
pen testers, not a Continuous Integration engine like Jenkins or
Bamboo.

You can use tools like OWASP ZAP to automatically scan a web app
for common vulnerabilities as part of the Continuous Integration/
Continuous Delivery pipeline. You can do this by running the scan‐
ner in headless mode through the command line, through the scan‐
ner’s API, or by using a wrapper of some kind, such as the ZAProxy
Jenkins plug-in or a higher-level test framework like BDD-Security
(which we’ll look at in a later section).

There is no definitive guidance (yet... the ZAP project team is work‐
ing on some) on how to best integrate scanning into Continuous

46 | Chapter 4: Security as Code: Security Tools and Practices in Continuous Delivery

https://github.com/zaproxy/zaproxy
https://wiki.jenkins-ci.org/display/JENKINS/ZAProxy+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/ZAProxy+Plugin

5 “Fuzzing at Scale.” Google Security Blog. https://security.googleblog.com/2011/08/
fuzzing-at-scale.html

Delivery—you’ll need to explore this on your own. You can try to
spider the app (if it is small enough), but it generally makes more
sense in Continuous Integration and Continuous Delivery to target
your scans in order to reduce the amount of time needed to execute
the tests and minimize the amount of noise created. You can do this
by proxying automated functional regression tests executed by tools
like Selenium through the scanner in order to map out and navigate
key forms and fields to be scanned. Then, invoke the scanner’s API
and instruct the scanner to execute its fuzzing attacks.

Then, you will need to pick through the results, filter out the back‐
ground noise, and determine what results constitute a pass or fail
and whether you need to stop the pipeline. As with static analysis
tools, you will need to tune dynamic scans to minimize false posi‐
tives. You will want to set “the bug bar” high enough to ensure that
you are not wasting the development team’s time.

You will also need to remove duplicate findings after each scan.
Tools like Code Dx or ThreadFix (which we will also look at in a
later section) can help you to do this.

Like static analysis scans, dynamic analysis checking takes time, and
will probably need to be spun off to run in parallel with other tests,
or even done out of band.

Fuzzing and Continuous Delivery
Another testing technique that can be valuable in finding security
vulnerabilities (especially injection bugs) is fuzzing. Fuzzing is a
brute-force reliability testing technique wherein you create and
inject random data into a file or API in order to intentionally cause
errors and then see what happens. Fuzz testing is important in
embedded systems development for which the costs of mistakes are
high, and it has been a fundamental part of application security test‐
ing programs at Microsoft, Facebook, Adobe, and Google.5 Fuzz
testing tools are also commonly used by security researchers to hunt
for bugs.

Security Testing in Continuous Delivery | 47

https://security.googleblog.com/2011/08/fuzzing-at-scale.html
https://security.googleblog.com/2011/08/fuzzing-at-scale.html

However, fuzzing, like scanning, doesn’t fit nicely into Continuous
Integration and Continuous Delivery automation for a number of
reasons:

• Fuzz tests are generally not predictable or repeatable. The
nature of fuzzing is to try random things and see what happens.

• The results of fuzz testing are also not predictable. The system
might crash or some kind of exception might occur that can
leave the system in an undefined state for future testing.

• The results of fuzzing can be difficult to assess and understand
and might require a manual reviewer to identify and qualify
problems and recognize when multiple problems have the same
cause.

• Good fuzzing takes time—hours or days—to complete and lots
of CPU cycles, which makes it difficult to fit into the time box of
Continuous Delivery.

Some newer fuzzing tools are designed to run (or can be adapted to
run) in Continuous Integration and Continuous Delivery. They let
you to seed test values to create repeatable tests, set time boxes on
test runs, detect duplicate errors, and write scripts to automatically
set up/restore state in case the system crashes. But you might still
find that fuzz testing is best done out of band.

Security in Unit and Integration Testing
Continuous Integration and Continuous Delivery and especially
practices like Behavior-Driven Development (BDD) and Test-
Driven Development (TDD)—wherein developers write tests before
they write the code—encourage developers to create a strong set of
automated tests to catch mistakes and protect themselves from
regressions as they add new features or make changes or fixes to the
code.

Most of these tests will be positive, happy-path tests which prove
that features work as expected. This is the way that most developers
think and it is what they are paid to do. But this means that they
often miss testing for edge cases, exceptions, and negative cases that
could catch security problems.

And most of these automated tests, following automated “testing
pyramid” conventions, will be low-level unit tests, written by devel‐

48 | Chapter 4: Security as Code: Security Tools and Practices in Continuous Delivery

http://martinfowler.com/bliki/TestPyramid.html
http://martinfowler.com/bliki/TestPyramid.html

opers to validate detailed logic within a method or function. Unit
tests are important in catching regressions as you refactor code or
make other changes, but they won’t find mistakes or misunderstand‐
ings made in calling functions or services, like not calling a function
at all, which are a common cause of security vulnerabilities and can
only be caught in higher-level functional or integration tests.

For security code and framework code and for other high-risk func‐
tions, you should convince developers to step off the happy path and
write good unit and functional and integration tests around—and
especially outside—boundary conditions. They need to test error
handling and exception handling logic, and write negative tests: san‐
ity tests that should never pass unless something has gone wrong.
Insist on high levels of automated test coverage for high-risk code.

Spend some time with the team to come up with abuse(r) or “evil
user” stories, “misuse cases” that explore how a bad user could try to
take advantage of a feature, or what could happen if they stray off of
the main success scenarios. This doesn’t necessarily require special‐
ized security knowledge; you can accomplish a lot by just asking

But, what happens if the user doesn’t...?

Then, write negative tests for these cases, tests which prove that
unauthenticated users can’t access admin functions, that a user can’t
see or change information for a different account, that they can’t
tamper with a return value, and so on. If these tests fail, something
is seriously broken and you want to learn about it as early as possi‐
ble.

Automated Attacks
Even with these tests in place, you should still go further and try to
attack your system. Bad guys are going to attack your system, if they
haven’t done so already. You should try to beat them to it.

There are a few test frameworks that are designed to make this easy
and that behave well in Continuous Integration and Continuous
Delivery:

• Gauntlt
• Mittn
• BDD-Security

Security Testing in Continuous Delivery | 49

https://www.cigital.com/papers/download/bsi2-misuse.pdf
http://gauntlt.org/
https://github.com/F-Secure/mittn
http://www.continuumsecurity.net/bdd-intro.html

Using one of these tools, you will be able to set up and run a basic
set of targeted automated pen tests against your system as part of
your automated test cycle.

Gauntlt: Go Ahead, Be Mean to Your Code
Gauntlt is a popular open source test framework written in Ruby
(and now also available in Golang) that uses Cucumber to describe
simple security-related asserts or complex automated attack scenar‐
ios in a way that is easy for developers and auditors to follow.

Gauntlt wraps pen-testing and security-testing tools, abstracting the
details of how they work and making them more accessible, and
controlling them so that you can create repeatable, deterministic
steps with clear pass/fail results.

You compose attack scenarios using Gherkin syntax, a high-level,
English-like language that is essentially self-documenting, making it
simple to describe and write tests:

Given
Set up conditions

When
Attack steps

Then
Parse output, filter out noise, and check return values to deter‐
mine pass/fail

Here is a simple attack from the Gauntlt site:

nmap-simple.attack
Feature: simple nmap attack to check for open ports
 Background:
 Given "nmap" is installed
 And the following profile:
 | name | value |
 | hostname | example.com |
 Scenario: Check standard web ports
 When I launch an "nmap" attack with:
 """
 nmap -F <hostname>
 """
 Then the output should match /80.tcp\s+open/
 Then the output should not match:
 """
 25\/tcp\s+open
 """

50 | Chapter 4: Security as Code: Security Tools and Practices in Continuous Delivery

http://gauntlt.org/

The intention behind Gauntlt is to encourage developers, testers,
and security specialists to collaborate on security testing, focusing
more on what they want to test, and less on how to do the testing.

It comes prepackaged with attack adapters for different tools (curl,
sslyze, sqlmap, garmr, arachni, dirb, heartbleed) that implement
step definitions from Gherkin to executable code. It also includes
sample attack files that you can customize and extend.

Some common tests that you can do using tools like Gauntlt
include running nmap to check for open ports, checking that SSL is
configured correctly, attempting SQL injections, and testing for
high-severity vulnerabilities like Heartbleed.

Just as with automating integration testing or acceptance testing, it
will take a while to build up a strong set of security tests in Continu‐
ous Delivery. Begin by building a post-deployment security smoke
test, a basic regression test that will run in acceptance testing and in
production to catch common and important security problems, and
to ensure that security configurations are correct.

Pen Testing and Bug Bounties
Manual penetration testing is not effective as a control gate in Con‐
tinuous Delivery or Continuous Deployment. The velocity of deliv‐
ery is too fast, and pen tests take too long to set up, run, and review.

But there is still important value in pen testing out-of-band from the
Continuous Delivery pipeline, not only to satisfy mandatory com‐
pliance requirements. More important, you can use the results of
pen testing to validate your security program, highlighting strengths
and weaknesses.

Good pen testing is exploratory and creative—unlike most of the
automated testing in Continuous Delivery, which is intended to
catch the same kinds of mistakes in design and coding and configu‐
ration, over and over. A good pen tester will help you to find prob‐
lems that you wouldn’t otherwise have known to look for or known
how to find.

The real value in these tests is not in the bugs that they find; it’s in
the information that the bugs provide you, if you look deep enough.
Where did the bug come from? Why did you miss finding it your‐
self? How did it get there in the first place? What do we need to

Security Testing in Continuous Delivery | 51

http://theagileadmin.com/2014/04/08/gauntlt-test-for-heartbleed/

6 Dave Farley (http://www.continuous-delivery.co.uk/), Interview March 17, 2016

change or improve to prevent problems like this from happening
again?

The same principle applies to Bug Bounties, which are part of the
security programs at leading organizations like Google, Etsy, Netflix,
and Facebook. Enlisting the community of security researchers to
find security and reliability bugs in your software gives you access to
creativity and skills that you couldn’t afford otherwise. They will
find some important bugs. Fixing these bugs will make your system
safer.

But, more importantly, they will provide you with information on
where you need to improve your design, coding, reviews, testing,
and configuration management. This is information that you can
use to get better as an organization and to build better and safer sys‐
tems.

Using Pen Tests to Improve Automated Testing at
LMAX

At The London Multi-Asset Exchange (LMAX), as part of its com‐
mitment to Continuous Delivery, one of the team’s goals was to
cover all of the system’s behavior through automated testing, to the
extent possible. This included not only functional and integration
testing, but performance (scalability and latency), operational resil‐
iency (through fault injection), and security.

As a regulated financial entity, LMAX underwent regular pen test‐
ing by external experts. The team saw pen tests not just as a check‐
mark, a compliance gate that they had to pass through, but also as a
valuable learning opportunity—and a challenge. They tried to
understand, and eventually to anticipate, what the pen testers were
looking for and how they found security problems. Then, LMAX
built this in to its own automated testing, to try to catch as many
problems as possible on their own, before the system was deployed
to production.6.

52 | Chapter 4: Security as Code: Security Tools and Practices in Continuous Delivery

http://www.continuous-delivery.co.uk/

Vulnerability Management
Infosec needs their own view into the pipeline and into the system,
and across all of the pipelines and systems and portfolios, to track
vulnerabilities, assess risk, and understand trends. You need metrics
for compliance and risk-management purposes, to understand
where you need to prioritize your testing and training efforts and to
assess your application security program.

Collecting data on vulnerabilities lets you ask some important ques‐
tions:

• How many vulnerabilities have you found?
• How were they found? What tools or testing approaches are giv‐

ing you the best returns?
• What are the most serious vulnerabilities?
• How long are they taking to get fixed? Is this getting better or

worse over time?

You can get this information by feeding security testing results from
your Continuous Delivery pipelines into a vulnerability manager,
such as Code Dx or ThreadFix.

ThreadFix
ThreadFix is a vulnerability management tool (available in open
source and enterprise versions) that consolidates vulnerability
information to provide a view into vulnerability risks and remedia‐
tion across tools, pipelines, and apps—and over time. ThreadFix
automatically takes vulnerability findings from SAST and DAST
tools (and manual pen tests), deduplicates the results, and lets an
analyst review and triage vulnerabilities and easily turn them into
bug reports that can be fed back into a developer’s bug tracking sys‐
tem or IDE. ThreadFix is designed to facilitate the feedback loop
from testing to developers while providing analytical and reporting
tools to security analysts so that they can compare vulnerability
risks across a portfolio and track program performance such as
time to remediation.

The open source engine includes integration with different testing
tools, Continuous Integration/Continuous Delivery servers, and
development toolsets. The commercial enterprise version offers

Security Testing in Continuous Delivery | 53

http://codedx.com/
http://www.threadfix.org/

cross-portfolio analysis and reporting as well as scanner orchestra‐
tion capabilities.

Securing the Infrastructure
In Continuous Delivery, the same practices, automated workflows,
and controls that are used to build and deliver secure code are used
to secure the infrastructure:

• Managing configuration as code (checking code into version
control, ensuring that it is reviewed, scanning it for common
mistakes)

• Building hardening policies into configuration code by default
• Using the Continuous Delivery pipeline to automatically test,

deploy, and track configuration changes
• Securing the Continuous Delivery pipeline itself

Let’s look at these ideas in some more detail.

Automated Configuration Management
Code-driven configuration management tools like Puppet, Chef,
and Ansible make it easy to set up standardized configurations
across hundreds of servers using common templates, minimizing
the risk that hackers can exploit one unpatched server, and letting
you minimize any differences between production, test, and devel‐
opment environments. All of the configuration information for the
managed environments is visible in a central repository and under
version control. This means that when a vulnerability is reported in
a software component like OpenSSL, it is easy to identify which sys‐
tems need to be patched. And it is easy to push patches out, too.

These tools also provide some host-based intrusion-detection capa‐
bilities and give you control over configuration drift: they continu‐
ously and automatically audit runtime configurations to ensure that
every system matches the master configuration definition, issue
alerts when something is missing or wrong, and can automatically
correct it.

Security should be baked in to Amazon Machine Images (AMIs)
and other configuration templates. Puppet manifests, Chef cook‐

54 | Chapter 4: Security as Code: Security Tools and Practices in Continuous Delivery

books, Ansible playbooks, and Dockerfiles should be written and
reviewed with security in mind. Unit tests for configuration code
should include security checks such as the following:

• Ensure that unnecessary services are disabled
• Ensure that ports that do not need to be open are indeed not

open
• Look for hardcoded credentials and secrets
• Review permissions on sensitive files and directories
• Ensure that security tools like OSSEC or AIDE are installed and

set up correctly
• Ensure that development tools are not installed in production

servers
• Check auditing and logging policies and configurations

Build standard hardening steps into your recipes instead of using
scripts or manual checklists. This includes minimizing the attack
surface by removing all packages that aren’t needed and that have
known problems; and changing default configurations to be safe.

Security standards like the Center for Internet Security (CIS) bench‐
marks and NIST configuration checklists can be burned into Puppet
and Chef and Ansible specifications. There are several examples of
Puppet modules and Chef cookbooks available to help harden Linux
systems against CIS benchmarks and the Defense Information Sys‐
tems Agency Security Technical Implementation Guides.

Hardening.io
Hardening.io is an open source infrastructure hardening frame‐
work from Deutsche Telekom for Linux servers. It includes practi‐
cal hardening steps for the base OS and common components such
as ssh, Apache, nginx, mysql, and Postgres.

Hardening templates are provided for Chef and Puppet as well as
Ansible (only base OS and ssh is currently implemented in Ansi‐
ble). The hardening rules are based on Deutsche Telekom’s internal
guidelines, BetterCrypto, and the NSA hardening guide.

Securing the Infrastructure | 55

https://benchmarks.cisecurity.org/
https://benchmarks.cisecurity.org/
https://web.nvd.nist.gov/view/ncp/repository
http://iase.disa.mil/stigs/Pages/index.aspx
http://iase.disa.mil/stigs/Pages/index.aspx
http://hardening.io/

Securing Your Continuous Delivery Pipeline
It’s important not only to secure the application and its runtime
environment, but to secure the Continuous Delivery tool chain and
build and test environments, too. You need to have confidence in the
integrity of delivery and the chain of custody, not just for compli‐
ance and security reasons, but also to ensure that changes are made
safely, repeatably, and traceably.

Your Continuous Delivery tool chain is also a dangerous attack tar‐
get itself: it provides a clear path for making changes and pushing
them automatically into production. If it is compromised, attackers
have an easy way into your development, test, and production envi‐
ronments. They could steal data or intellectual property, inject mal‐
ware anywhere into the environment, DoS your systems, or cripple
your organization’s ability to respond to an attack by shutting down
the pipeline itself.

Continuous Delivery and Continuous Deployment effectively
extend the attack surface of your production system to your build
and automated test and deployment environment.

You also need to protect the pipeline from insider attacks by ensur‐
ing that all changes are fully transparent and traceable from end to
end, that a malicious and informed insider cannot make a change
without being detected, and that they cannot bypass any checks or
validations.

Do a threat model on the Continuous Delivery pipeline. Look for
weaknesses in the setup and controls, and gaps in auditing or log‐
ging. Then, take steps to secure your configuration management
environment and Continuous Delivery pipeline:

• Harden the systems that host the source and build artifact repo‐
sitories, the Continuous Integration and Continuous Delivery
server(s), and the systems that host the configuration manage‐
ment, build, deployment, and release tools. Ensure that you
clearly understand—and control—what is done on-premises
and what is in the cloud.

• Harden the Continuous Integration and/or Continuous Deliv‐
ery server. Tools like Jenkins are designed for developer conve‐
nience and are not secure by default. Ensure that these tools
(and the required plug-ins) are kept up-to-date and tested fre‐
quently.

56 | Chapter 4: Security as Code: Security Tools and Practices in Continuous Delivery

• Lock down and harden your configuration management tools.
See “How to be a Secure Chef,” for example.

• Ensure that keys, credentials, and other secrets are protected.
Get secrets out of scripts and source code and plain-text files
and use an audited, secure secrets manager like Chef Vault,
Square’s KeyWhiz project, or HashiCorp Vault.

• Secure access to the source and binary repos and audit access to
them.

• Implement access control across the entire tool chain. Do not
allow anonymous or shared access to the repos, to the Continu‐
ous Integration server, or confirmation manager or any other
tools.

• Change the build steps to sign binaries and other build artifacts
to prevent tampering.

• Periodically review the logs to ensure that they are complete and
that you can trace a change through from start to finish. Ensure
that the logs are immutable, that they cannot be erased or
forged.

• Ensure that all of these systems are monitored as part of the
production environment.

Security in Production
Security doesn’t end after systems are in production. In DevOps,
automated security checks, continuous testing, and monitoring
feedback loops are integral parts of production operations.

Runtime Checks and Monkeys
If you are going to allow developers to do self-service, push-button
deploys to production and you can’t enforce detailed reviews of each
change, you will need to add some runtime checking to catch over‐
sights or shortcuts. This is what Jason Chan at Netflix calls moving
“from gates to guardrails”.

After each deploy, check that engineers used templates properly and
that they didn’t make a fundamental mistake in configuration or
deployment that could open up the system to attack or make it less
reliable under failure.

Security in Production | 57

https://learn.chef.io/skills/be-a-secure-chef/
https://github.com/chef/chef-vault
https://github.com/square/keywhiz
https://www.hashicorp.com/blog/vault.html
https://vimeo.com/79778836

This is why Netflix created the Simian Army, a set of automated
runtime checks and tests, including the famous Chaos Monkey.

Chaos Monkey, Chaos Gorilla, and Chaos Kong check that the sys‐
tem is set up and designed correctly to handle failures by randomly
injecting failures into the production runtime, as part of Netflix’s
approach to Chaos Engineering.

The other monkeys are rule-driven compliance services that auto‐
matically monitor the runtime environment to detect changes and
to ensure that configurations match predefined definitions. They
look for violations of security policies and common security config‐
uration weaknesses (in the case of Security Monkey) or configura‐
tions that do not meet predefined standards (Conformity Monkey).
They run periodically online, notifying the owner(s) of the service
and infosec when something looks wrong. The people responsible
for the service need to investigate and correct the problem, or justify
the situation.

Security Monkey captures details about changes to policies over
time. It also can be used as an analysis and reporting tool and for
forensics purposes, letting you search for changes across time peri‐
ods and across accounts, regions, services, and configuration items.
It highlights risks like changes to access control policies or firewall
rules.

Similar tools include Amazon’s AWS Inspector, which is a service
that provides automated security assessments of applications
deployed on AWS, scans for vulnerabilities, and checks for devia‐
tions from best practices, including rules for PCI DSS and other
compliance standards. It provides a prioritized list of security issues
along with recommendations on how to fix them.

Although checks like this are particularly important in a public
cloud environment like Netflix operates in, where changes are con‐
stantly being made by developers, the same ideas can be extended to
any system. Always assume that mistakes can and will be made, and
check to ensure that the system setup is correct any time a change is
made. You can write your own runtime asserts:

• Check that firewall rules are set up correctly
• Verify files and directory permissions
• Check sudo rules

58 | Chapter 4: Security as Code: Security Tools and Practices in Continuous Delivery

https://github.com/Netflix/SimianArmy
http://techblog.netflix.com/2014/09/introducing-chaos-engineering.html
https://aws.amazon.com/inspector/

• Confirm SSL configurations
• Ensure that logging and monitoring services are working cor‐

rectly

Run your security smoke test every time the system is deployed, in
test and in production.

Tools like Puppet and Chef will automatically and continuously scan
infrastructure to detect variances from the expected baseline state
and alert or automatically revert them.

Situational Awareness and Attack-Driven Defense
DevOps values production feedback and emphasizes the importance
of measuring and monitoring production activity. You can extend
the same approaches—and the same tools —to security monitoring,
involving the entire team instead of just the SOC, making security
metrics available in the context of the running system, and graphing
and visualizing security-related data to identify trends and anoma‐
lies.

Recognize that your system is, or will be, under constant attack.
Take advantage of the information that this gives you. Use this infor‐
mation to identify and understand attacks and the threat profile of
the system.

Attacks take time. Move to the left of the kill chain and catch them
in the early stages. You will reduce the Mean Time to Detect
(MTTD) attacks by taking advantage of the close attention that
DevOps teams pay to feedback from production, and adding secu‐
rity data into these feedback loops. You also will benefit by engaging
people who are closer to the system: the people who wrote the code
and keep the system running, who understand how it is supposed to
work, what normal looks like, and when things aren’t normal.

Feed this data back into your testing and your reviews, prioritizing
your actions based on what you are seeing in production, in the
same way that you would treat feedback from Continuous Integra‐
tion or A/B testing in production. This is real feedback, not theoreti‐
cal, so it should be acted on immediately and seriously.

This is what Zane Lackey at Signal Sciences calls “Attack-Driven
Defense”. Information on security events helps you to understand
and prioritize threats based on what’s happening now in production.

Security in Production | 59

https://www.youtube.com/watch?v=_4vSurKPl6I
https://www.youtube.com/watch?v=_4vSurKPl6I

Watching for runtime errors and exceptions and attack signatures
shows where you are being probed and tested, what kind of attacks
you are seeing, where they are attacking, where they are being suc‐
cessful, and what parts of the code need to be protected.

This should help drive your security priorities, tell you where you
should focus your testing and remediation. Vulnerabilities that are
never attacked (probably) won’t hurt you. But attacks that are hap‐
pening right now need to be resolved—right now.

Signal Sciences
Signal Sciences is a tech startup that offers a next-generation SaaS-
based application firewall for web systems. It sets out to “Make
security visible” by providing increased transparency into attacks in
order to understand risks. It also provides the ability to identify
anomalies and block attacks at runtime.

Signal Sciences was started by the former leaders of Etsy’s security
team. The firewall takes advantage of the ideas and techniques that
they developed for Etsy. It is not signature-based like most web
application firewalls (WAFs). It analyzes traffic to detect attacks,
and aggregates attack signals in its cloud backend to determine
when to block traffic. It also correlates attack signals with runtime
errors to identify when the system might be in the process of being
breached.

Attack data is made visible to the team through dashboards, alert
notifications over email, or through integration with services like
Slack, HipChat, PagerDuty, and Datadog. The dashboards are built
API-first so that data can be integrated into log analysis tools like
Splunk or ELK, or into tools like ThreadFix or Jira.

The firewall and its rules engine are being continuously improved
and updated, through Continuous Delivery.

Runtime Defense
If you can’t successfully shift security left, earlier into design and
coding and Continuous Integration and Continuous Delivery, you’ll
need to add more protection at the end, after the system is in pro‐
duction. Network IDS/IPS solutions tools like Tripwire or signature-
based WAFs aren’t designed to keep up with rapid system and
technology changes in DevOps. This is especially true for cloud IaaS

60 | Chapter 4: Security as Code: Security Tools and Practices in Continuous Delivery

https://www.signalsciences.com/product/

and PaaS environments, for which there is no clear network perime‐
ter and you might be managing hundreds or thousands of ephem‐
eral instances across different environments (public, private, and
hybrid), with self-service Continuous Deployment.

A number of cloud security protection solutions are available, offer‐
ing attack analysis, centralized account management and policy
enforcement, file integrity monitoring and intrusion detection, vul‐
nerability scanning, micro-segmentation, and integration with con‐
figuration management tools like Chef and Puppet. Some of these
solutions include the following:

Security in Production | 61

• Alert Logic
• CloudPassage Halo
• Dome9 SecOps
• Evident.io
• Illumio
• Palerra LORIC
• Threat Stack

Another kind of runtime defense technology is Runtime Application
Security Protection/Self-Protection (RASP), which uses run-time
instrumentation to catch security problems as they occur. Like
application firewalls, RASP can automatically identify and block
attacks. And like application firewalls, you can extend RASP to leg‐
acy apps for which you don’t have source code.

But unlike firewalls, RASP is not a perimeter-based defense. RASP
instruments the application runtime code and can identify and
block attacks at the point of execution. Instead of creating an
abstract model of the code (like static analysis tools), RASP tools
have visibility into the code and runtime context, and use taint anal‐
ysis and data flow and control flow and lexical analysis techniques,
directly examining data variables and statements to detect attacks.
This means that RASP tools have a much lower false positive (and
false negative) rate than firewalls.

You also can use RASP tools to inject logging and auditing into leg‐
acy code to provide insight into the running application and attacks
against it. They trade off runtime overheads and runtime costs
against the costs of making coding changes and fixes upfront.

There are only a small number of RASP solutions available today,
mostly limited to applications that run in the Java JVM and .NET
CLR, although support for other languages like Node.js, Python, and
Ruby is emerging. These tools include the following:

• Immunio
• Waratek
• Prevoty

62 | Chapter 4: Security as Code: Security Tools and Practices in Continuous Delivery

https://www.alertlogic.com/
https://www.cloudpassage.com/products/
https://dome9.com/
http://evident.io/
https://www.illumio.com/home
http://palerra.com/platform/
https://www.threatstack.com/
https://www.immun.io/
http://www.waratek.com/
https://www.prevoty.com/

• Contrast Security (which we will look at in some more detail)

Contrast Security
Contrast is an Interactive Automated Software Testing (IAST) and
RASP solution that directly instruments running code and uses
control flow and data flow analysis and lexical analysis to trace and
catch security problems at the point of execution. In IAST mode,
Contrast can run on a developer’s workstation or in a test environ‐
ment or in Continuous Integration/Continuous Delivery to alert if
a security problem like SQL injection or XSS is found during func‐
tional testing, all while adding minimal overhead. You can automat‐
ically find security problems simply by executing the code; the
more thorough your testing, and the more code paths that you
cover, the more chances that you have to find vulnerabilities. And
because these problems are found as the code is executing, the
chances of false positives are much lower than running static analy‐
sis.

Contrast deduplicates findings and notifies you of security bugs
through different interfaces such as email or Slack or HipChat, or
by recording a bug report in Jira. In RASP mode, Contrast runs in
production to trace and catch the same kinds of security problems
and then alerts operations or automatically blocks the attacks.

It works in Java, .NET (C# and Visual Basic), Node.js, and a range
of runtime environments.

Other runtime defense solutions take a different approach from
RASP or firewalls. Here are a couple of innovative startups in this
space that are worth checking out:

tCell
tCell is a startup that offers application runtime immunity. tCell
is a cloud-based SaaS solution that instruments the system at
runtime and injects checks and sensors into control points in
the running application: database interfaces, authentication
controllers, and so on.
It uses this information to map out the attack surface of the sys‐
tem and identifies when the attack surface is changed. tCell also
identifies and can block runtime attacks based on the following:

Security in Production | 63

https://www.contrastsecurity.com/rasp
https://www.tcell.io/

• Known bad patterns of behavior (for example, SQL injection
attempts)—like a WAF.

• Threat intelligence and correlation—black-listed IPs, and so on.
• Behavioral learning—recognizing anomalies in behavior and

traffic. Over time, it identifies what is normal and can enforce
normal patterns of activity, by blocking or alerting on excep‐
tions.

tCell works in Java, Node.js, Ruby on Rails, and Python (.NET
and PHP are in development).

Twistlock
Twistlock provides runtime defense capabilities for Docker con‐
tainers in enterprise environments. Twistlock’s protection
includes enterprise authentication and authorization capabilities
—the Twistlock team is working with the Docker community to
help implement frameworks for authorization (their authoriza‐
tion plug-in framework was released as part of Docker 1.10)
and authentication, and Twistlock provides plug-ins with fine-
grained access control rules and integration with LDAP/AD.
Twistlock scans containers for known vulnerabilities in depen‐
dencies and configuration (including scanning against the
Docker CIS benchmark). It also scans to understand the pur‐
pose of each container. It identifies the stack and the behavioral
profile of the container and how it is supposed to act, creating a
white list of expected and allowed behaviors.
An agent installed in the runtime environment (also as a con‐
tainer) runs on each node, talking to all of the containers on the
node and to the OS. This agent provides visibility into runtime
activity of all the containers, enforces authentication and
authorization rules, and applies the white list of expected behav‐
iors for each container as well as a black list of known bad
behaviors (like a malware solution).
And because containers are intended to be immutable, Twist‐
lock recognizes and can block attempts to change container
configurations at runtime.

Learning from Failure: Game Days, Red Teaming, and
Blameless Postmortems
Game Days—running real-life, large-scale failure tests (like shutting
down a data center)—have also become common practices in

64 | Chapter 4: Security as Code: Security Tools and Practices in Continuous Delivery

https://www.twistlock.com/

7 ACM: Resilience Engineering: Learning to Embrace Failure. https://queue.acm.org/
detail.cfm?id=2371297

8 ACM: “Fault Injection in Production, Making the case for resilience testing.” http://
queue.acm.org/detail.cfm?id=2353017

DevOps organizations like Amazon, Google, and Etsy. These exerci‐
ses can involve (at Google, for example) hundreds of engineers
working around the clock for several days, to test out disaster recov‐
ery cases and to assess how stress and exhaustion could impact the
organization’s ability to deal with real accidents.7

At Etsy, Game Days are run in production, even involving core func‐
tions such as payments handling. Of course, this begs the question,
“Why not simulate this in a QA or staging environment?” Etsy’s
response is, first, the existence of any differences in those environ‐
ments brings uncertainty to the exercise; second, the risk of not
recovering has no consequences during testing, which can bring
hidden assumptions into the fault tolerance design and into recov‐
ery. The goal is to reduce uncertainty, not increase it.8

These exercises are carefully tested and planned in advance. The
team brainstorms failure scenarios and prepares for them, running
through failures first in test and fixing any problems that come up.
Then, it’s time to execute scenarios in production, with developers
and operators watching closely and ready to jump in and recover,
especially if something goes unexpectedly wrong.

You can take many of the ideas from Game Days, which are
intended to test the resilience of the system and the readiness of the
DevOps team to handle system failures, and apply them to infosec
attack scenarios through Red Teaming. This is a core practice at
organizations like Microsoft, Facebook, Salesforce, Yahoo!, and
Intuit for their cloud-based services.

Like operations Game Days, Red Team exercises are most effectively
done in production.

The Red Team identifies weaknesses in the system that they believe
can be exploited, and work as ethical hackers to attack the live sys‐
tem. They are generally given freedom to act short of taking the sys‐
tem down or damaging or exfiltrating sensitive data. The Red Team’s
success is measured by the seriousness of the problems that they
find, and their Mean Time to Exploit/Compromise.

Security in Production | 65

https://queue.acm.org/detail.cfm?id=2371297
https://queue.acm.org/detail.cfm?id=2371297
http://queue.acm.org/detail.cfm?id=2353017
http://queue.acm.org/detail.cfm?id=2353017

The Blue Team is made up of the people who are running, support‐
ing, and monitoring the system. Their responsibility is to identify
when an attack is in progress, understand the attack, and come up
with ways to contain it. Their success is measured by the Mean Time
to Detect the attack and their ability to work together to come up
with a meaningful response.

Here are the goals of these exercises:

• Identify gaps in testing and in design and implementation by
hacking your own systems to find real, exploitable vulnerabili‐
ties.

• Exercise your incident response and investigation capabilities,
identify gaps or weaknesses in monitoring and logging, in play‐
books, and escalation procedures and training.

• Build connections between the security team and development
and operations by focusing on the shared goal of making the
system more secure.

After a Game Day or Red Team exercise, just like after a real pro‐
duction outage or a security breach, the team needs to get together
to understand what happened and learn how to get better. They do
this in Blameless Postmortem reviews. Here, everyone meets in an
open environment to go over the facts of the event: what happened,
when it happened, how people reacted, and then what happened
next. By focusing calmly and objectively on understanding the facts
and on the problems that came up, the team can learn more about
the system and about themselves and how they work, and they can
begin to understand what went wrong, ask why things went wrong,
and look for ways to improve, either in the way that the system is
designed, or how it is tested, or in how it is deployed, or how it is
run.

To be successful, you need to create an environment in which people
feel safe to share information, be honest and truthful and transpar‐
ent, and to think critically without being criticized or blamed—what
Etsy calls a “Just Culture.” This requires buy-in from management
down, understanding and accepting that accidents can and will hap‐
pen, and that they offer an important learning opportunity. When
done properly, Blameless Postmortems not only help you to learn
from failures and understand and resolve important problems, but

66 | Chapter 4: Security as Code: Security Tools and Practices in Continuous Delivery

9 “Blameless PostMortems and a Just Culture.” https://codeascraft.com/2012/05/22/
blameless-postmortems/

10 See “Splitting the Check on Compliance and Security: Keeping Developers and Audi‐
tors Happy in the Cloud.” Jason Chan, Netflix, AWS re:Invent, October 2015. https://
www.youtube.com/watch?v=Io00_K4v12Y

they can also bring people together and reinforce openness and
trust, making the organization stronger.9

Security at Netflix
Netflix is another of the DevOps unicorns. Like Etsy, Amazon, and
Facebook, it has built its success through a culture based on “Free‐
dom and Responsibility” (employees, including engineers, are free
to do what they think is the right thing, but they are also responsible
for the outcome) and a massive commitment to automation, includ‐
ing in security—especially in security.

After experiencing serious problems running its own IT infrastruc‐
ture, Netflix made the decision to move its online business to the
cloud. It continues to be one of the largest users of Amazon’s AWS
platform.

Netflix’s approach to IT operations is sometimes called “NoOps”
because they don’t have operations engineers or system admins.
They have effectively outsourced that part of their operations to
Amazon AWS because they believe that data center management
and infrastructure operations is “undifferentiated heavy lifting.” Or,
put another way, work that is hard to do right but that does not add
direct value to their business.

Here are the four main pillars of Netflix’s security program:10

Undifferentiated heavy lifting and shared responsibility
Netflix relies heavily on the capabilities of AWS and builds on or
extends these capabilities as necessary to provide additional
security and reliability features. It relies on its cloud provider for
automated provisioning, platform vulnerability management,
data storage and backups, and physical data center protections.
Netflix built its own PaaS layer on top of this, including an
extensive set of security checks and analytic and monitoring
services. Netflix also bakes secure defaults into its base infra‐
structure images, which are used to configure each instance.

Security in Production | 67

https://codeascraft.com/2012/05/22/blameless-postmortems/
https://codeascraft.com/2012/05/22/blameless-postmortems/
https://www.youtube.com/watch?v=Io00_K4v12Y
https://www.youtube.com/watch?v=Io00_K4v12Y
http://www.slideshare.net/reed2001/culture-1798664/39-Seven_Aspects_of_our_Culture
http://www.slideshare.net/reed2001/culture-1798664/39-Seven_Aspects_of_our_Culture

Traceability in development
Source control, code reviews through Git pull requests, and the
Continuous Integration and Continuous Delivery pipeline pro‐
vide a complete trace of all changes from check-in to deploy‐
ment. Netflix uses the same tools to track information for its
own support purposes as well as for auditors instead of wasting
time creating audit trails just for compliance purposes. Engi‐
neers and auditors both need to know who made what changes
when, how the changes were tested, when they were deployed,
and what happened next. This provides visibility and traceabil‐
ity for support and continuous validation of compliance.

Continuous security visibility
Recognize that the environment is continuously changing and
use automated tools to identify and understand security risks
and to watch for and catch problems. Netflix has written a set of
its own tools to do this, including Security Monkey, Conformity
Monkey, and Penguin Shortbread (which automatically identi‐
fies microservices and continuously assesses the risk of each ser‐
vice based on runtime dependencies).

Compartmentalization
Take advantage of cloud account segregation, data tokenization,
and microservices to minimize the system’s attack surface and
contain attacks, and implement least privilege access policies.
Recognizing that engineers will generally ask for more privi‐
leges than they need “just in case,” Netflix has created an auto‐
mated tool called Repoman, which uses AWS Cloudtrail activity
history and reduces account privileges to what is actually
needed based on what each account has done over a period of
time. Compartmentalization and building up bulkheads also
contains the “blast radius” of a failure, reducing the impact on
operations when something goes wrong.

Whether you are working in the cloud or following DevOps in your
own data center, these principles are all critical to building and oper‐
ating a secure and reliable system.

68 | Chapter 4: Security as Code: Security Tools and Practices in Continuous Delivery

CHAPTER 5

Compliance as Code

DevOps can be followed to achieve what Justin Arbuckle at Chef
calls “Compliance as Code”: building compliance into development
and operations, and wiring compliance policies and checks and
auditing into Continuous Delivery so that regulatory compliance
becomes an integral part of how DevOps teams work on a day-to-
day basis.

Chef Compliance
Chef Compliance is a tool from Chef that scans infrastructure and
reports on compliance issues, security risks, and outdated software.
It provides a centrally managed way to continuously and automati‐
cally check and enforce security and compliance policies.

Compliance profiles are defined in code to validate that systems are
configured correctly, using InSpec, an open source testing frame‐
work for specifying compliance, security, and policy requirements.

You can use InSpec to write high-level, documented tests/assertions
to check things such as password complexity rules, database config‐
uration, whether packages are installed, and so on. Chef Compli‐
ance comes with a set of predefined profiles for Linux and
Windows environments as well as common packages like Apache,
MySQL, and Postgres.

When variances are detected, they are reported to a central dash‐
board and can be automatically remediated using Chef.

69

https://www.chef.io/compliance/

1 http://itrevolution.com/devops-and-auditors-the-devops-audit-defense-toolkit/

A way to achieve Compliance as Code is described in the “DevOps
Audit Defense Toolkit”, a free, community-built process framework
written by James DeLuccia, IV, Jeff Gallimore, Gene Kim, and Byron
Miller.1 The Toolkit builds on real-life examples of how DevOps is
being followed successfully in regulated environments, on the Secu‐
rity as Code practices that we’ve just looked at, and on disciplined
Continuous Delivery. It’s written in case-study format, describing
compliance at a fictional organization, laying out common opera‐
tional risks and control strategies, and showing how to automate the
required controls.

Defining Policies Upfront
Compliance as Code brings management, compliance, internal
audit, the PMO and infosec to the table, together with development
and operations. Compliance policies and rules and control work‐
flows need to be defined upfront by all of these stakeholders work‐
ing together. Management needs to understand how operational
risks and other risks will be controlled and managed through the
pipeline. Any changes to these policies or rules or workflows need to
be formally approved and documented; for example, in a Change
Advisory Board (CAB) meeting.

But instead of relying on checklists and procedures and meetings,
the policies and rules are enforced (and tracked) through automated
controls, which are wired into configuration management tools and
the Continuous Delivery pipeline. Every change ties back to version
control and a ticketing system like Jira for traceability and auditabil‐
ity: all changes must be made under a ticket, and the ticket is auto‐
matically updated along the pipeline, from the initial request for
work all the way to deployment.

Automated Gates and Checks
The first approval gate is mostly manual. Every change to code and
configuration must be reviewed precommit. This helps to catch mis‐
takes and ensure that no changes are made without at least one
other person checking to verify that it was done correctly. High-risk
code (defined by the team, management, compliance, and infosec)

70 | Chapter 5: Compliance as Code

http://itrevolution.com/devops-and-auditors-the-devops-audit-defense-toolkit/
http://itrevolution.com/devops-and-auditors-the-devops-audit-defense-toolkit/
http://itrevolution.com/devops-and-auditors-the-devops-audit-defense-toolkit/

must also have an SME review; for example, security-sensitive code
must be reviewed by a security expert. Periodic checks are done by
management to ensure that reviews are being done consistently and
responsibly, and that no “rubber stamping” is going on. The results
of all reviews are recorded in the ticket. Any follow-up actions that
aren’t immediately addressed are added to the team’s backlog as
another ticket.

In addition to manual reviews, automated static analysis checking is
also done to catch common security bugs and coding mistakes (in
the IDE and in the Continuous Integration/Continuous Delivery
pipeline). Any serious problems found will fail the build.

After it is checked-in, all code is run through the automated test
pipeline. The Audit Defense Toolkit assumes that the team follows
Test-Driven Development (TDD), and outlines an example set of
tests that should be executed.

Infrastructure changes are done using an automated configuration
management tool like Puppet or Chef, following the same set of
controls:

• Changes are code reviewed precommit
• High-risk changes (again, as defined by the team) must go

through a second review by an SME
• Static analysis/lint checks are done automatically in the pipeline
• Automated tests are performed using a test framework like

rspec-puppet or Chef Test Kitchen or ServerSpec
• Changes are deployed to test and staging in sequence with auto‐

mated smoke testing and integration testing

And, again, every change is tracked through a ticket and logged.

Managing Changes in Continuous Delivery
Because DevOps is about making small changes, the Audit Defense
Toolkit assumes that most changes can be treated as standard or
routine changes that are essentially preapproved by management
and therefore do not require CAB approval.

It also assumes that bigger changes will be made “dark.” In other
words, that they will be made in small, safe, and incremental

Managing Changes in Continuous Delivery | 71

changes, protected behind runtime feature switches that are turned
off by default. The feature will only be rolled out with coordination
between development, ops, compliance, and other stakeholders.

Any problems found in production are reviewed through post-
mortems, and tests added back into the pipeline to catch the prob‐
lems (following TDD principles).

Separation of Duties in the DevOps Audit
Toolkit
In the DevOps Audit Toolkit, a number of controls enforce or sup‐
port Separation of Duties:

• Mandatory independent peer reviews ensure that no engineer
(dev or ops) can make a change without someone else being
aware and approving it. Reviewers are assigned randomly where
possible to prevent collusion.

• Developers are granted read-only access to production systems
to assist with troubleshooting. Any fixes need to be made
through the Continuous Delivery pipeline (fixing forward) or
by automatically rolling changes back (again, through the Con‐
tinuous Delivery pipeline/automated deployment processes)
which are fully auditable and traceable.

• All changes made through the pipeline are transparent, pub‐
lished to dashboards, IRC, and so on.

• Production access logs are reviewed by IT operations manage‐
ment weekly.

• Access credentials are reviewed regularly.
• Automated detective change control tools (for example, Trip‐

wire, OSSEC, UpGuard) are used to check for unauthorized
changes.

These controls minimize the risk of developers being able to make
unauthorized, and undetected, changes to production.

72 | Chapter 5: Compliance as Code

Using the Audit Defense Toolkit
The DevOps Audit Defense Toolkit provides a roadmap to how you
can take advantage of DevOps workflows and automated tools, and
some of the security controls and checks that we’ve already looked
at, to support your compliance and governance requirements.

It requires a lot of discipline and maturity and might be too much
for some organizations to take on—at least at first. You should
examine the controls and decide where to begin.

Although it assumes Continuous Deployment of changes directly to
production, the ideas and practices can easily be adapted for Con‐
tinuous Delivery by adding a manual review gate before changes are
pushed to production.

Code Instead of Paperwork
Compliance as Code tries to minimize paperwork and overhead.
You still need clearly documented policies that define how changes
are approved and managed, and checklists for procedures that can‐
not be automated. But most of the procedures and the approval
gates are enforced through automated rules in the Continuous Inte‐
gration/Continuous Delivery pipeline, leaning on the automated
pipeline and tooling to ensure that all of the steps are followed con‐
sistently and taking advantage of the detailed audit trail that is auto‐
matically created.

In the same way that frequently exercising build and deployment
steps reduces operational risks, exercising compliance on every
change, following the same standardized process and automated
steps, reduces the risks of compliance violations. You—and your
auditors—can be confident that all changes are made the same way,
that all code is run through the same tests and checks, and that
everything is tracked the same way: consistent, complete, repeatable,
and auditable.

Standardization makes auditors happy. Auditing makes auditors
happy (obviously). Compliance as Code provides a beautiful audit
trail for every change, from when the change was requested and
why, to who made the change and what that person changed, who
reviewed the change and what was found in the review, how and

Using the Audit Defense Toolkit | 73

2 Dave Farley (http://www.continuous-delivery.co.uk/), Interview July 24, 2015

when the change was tested, to when it was deployed. Except for the
discipline of setting up a ticket for every change and tagging
changes with a ticket number, compliance becomes automatic and
seamless to the people who are doing the work.

Just as beauty is in the eye of the beholder, compliance is in the
opinion of the auditor. Auditors might not understand or agree with
this approach at first. You will need to walk them through it and
prove that the controls work. But that shouldn’t be too difficult, as
Dave Farley, one of the original authors of Continuous Delivery
explains:

I have had experience in several finance firms converting to Con‐
tinuous Delivery. The regulators are often wary at first, because
Continuous Delivery is outside of their experience, but once they
understand it, they are extremely enthusiastic. So regulation is not
really a barrier, though it helps to have someone that understands
the theory and practice of Continuous Delivery to explain it to
them at first.
If you look at the implementation of a deployment pipeline, a core
idea in Continuous Delivery, it is hard to imagine how you could
implement such a thing without great traceability. With very little
additional effort the deployment pipeline provides a mechanism for
a perfect audit trail. The deployment pipeline is the route to pro‐
duction. It is an automated channel through which all changes are
released. This means that we can automate the enforcement of
compliance regulations—“No release if a test fails,” “No release if a
trading algorithm wasn’t tested,” “No release without sign-off by an
authorised individual,” and so on. Further, you can build in mecha‐
nisms that audit each step, and any variations. Once regulators see
this, they rarely wish to return to the bad old days of paper-based
processes.2

74 | Chapter 5: Compliance as Code

http://www.continuous-delivery.co.uk/

CHAPTER 6

Conclusion: Building a Secure
DevOps Capability and Culture

DevOps—the culture, the process frameworks and workflows, the
emphasis on automation and feedback—can all be used to improve
your security program.

You can look to leaders like Etsy, Netflix, Amazon, and Google for
examples of how you can do this successfully. Or the London Multi-
Asset Exchange, or Capital One, or Intuit, or E*Trade, or the United
States Department of Homeland Security. The list is growing.

These organizations have all found ways to balance security and
compliance with speed of delivery, and to build protection into their
platforms and pipelines.

They’ve done this—and you can do this—by using Continuous
Delivery as a control structure for securing software delivery and
enforcing compliance policies; securing the runtime through Infra‐
structure as Code; making security part of the feedback loops and
improvement cycles in DevOps; building on DevOps culture and
values; and extending this to embrace security.

Pick a place to begin. Start by fixing an important problem or
addressing an important risk. Or start with something simple, where
you can achieve a quick win and build momentum.

Implementing Software Component Analysis to automatically create
a bill of materials for a system could be an easy win. This lets you
identify and resolve risks in third-party components early in the

75

SDLC, without directly affecting development workflows or slowing
delivery.

Securing the Continuous Delivery pipeline itself is another impor‐
tant and straightforward step that you can take without slowing
delivery. Ensuring that changes are really being made in a reliable,
repeatable, and auditable way that you and the business can rely on
the integrity of automated changes. Doing this will also help you to
better understand the engineering workflow and tool chain so that
you can prepare to take further steps.

You could start at the beginning, by ensuring that risk assessments
are done on every new app or service, looking at the security protec‐
tions (and risks) in the language(s) and framework(s) that the engi‐
neering team wants to use. You could build hardening into Chef
recipes or Puppet manifests to secure the infrastructure. Or, you
could start at the end, by adding runtime checks like Netflix’s mon‐
keys to catch dangerous configuration or deployment mistakes in
production.

The point is to start somewhere and make small, meaningful
changes. Measure the results and keep iterating. Take advantage of
the same tools and workflows that dev and ops are using. Check
your scripts and tools into version control. Use Docker to package
security testing and forensics tools. Use the Continuous Delivery
pipeline to deploy them. Work with developers and operations to
identify and resolve risks. Use DevOps to secure DevOps.

Find ways to help the team deliver, but in a secure way that minimi‐
zes risks and ensures compliance while minimizing friction and
costs. Don’t get in the way of the feedback loops. Use them instead
to measure, learn, and improve.

Working with dev and ops, understanding how they do what they
do, using the same tools, solving problems together, will bring dev
and ops and infosec together.

In my organization, moving to DevOps and DevOpsSec has been,
and continues to be, a journey. We began by building security pro‐
tection into our frameworks, working with a security consultancy to
review the architecture and train the development team. We imple‐
mented Continuous Integration and built up our automated test
suite and wired-in static analysis testing.

76 | Chapter 6: Conclusion: Building a Secure DevOps Capability and Culture

We have created a strong culture of code reviews and made incre‐
mental threat modeling part of our change controls. Regular pen
tests are used as opportunities to learn how and where we need to
improve our security program and our design and code. Our sys‐
tems engineering team manages infrastructure through code, using
the same engineering practices as the developers: version control,
code reviews, static analysis, and automated testing in Continuous
Integration. And as we shortened our delivery cycle, moving toward
Continuous Delivery, we have continued to simplify and automate
more steps and checks so that they can be done more often and to
create more feedback loops. Security and compliance are now just
another part of how we build and deliver and run systems, part of
everyone’s job.

DevOps is fundamentally changing how dev and ops are done today.
And it will change how security is done, too. It requires new skills,
new tools, and a new set of priorities. It will take time and a new
perspective. So the sooner you get started, the better.

Conclusion: Building a Secure DevOps Capability and Culture | 77

About the Author
Jim Bird is a CTO, software development manager, and project
manager with more than 20 years of experience in financial services
technology. He has worked with stock exchanges, central banks,
clearinghouses, securities regulators, and trading firms in more than
30 countries. He is currently the CTO of a major US-based institu‐
tional alternative trading system.

Jim has been working in Agile and DevOps environments for several
years. His first experience with incremental and iterative (“step-by-
step”) development was back in the early 1990s, when he worked at
a West Coast tech firm that developed, tested, and delivered soft‐
ware in monthly releases to customers around the world—he didn’t
realize how unique that was at the time. Jim is active in the DevOps
and AppSec communities, is a contributor to the Open Web Appli‐
cation Security Project (OWASP), and occasionally helps out as an
analyst for the SANS Institute.

Jim is also the author of the O’Reilly report, DevOps for Finance:
Reducing Risk through Continuous Delivery.

	Cover
	Security
	Copyright
	Table of Contents
	Chapter 1. DevOpsSec: Delivering Secure Software through Continuous Delivery
	Introduction

	Chapter 2. Security and Compliance Challenges and Constraints in DevOps
	Speed: The Velocity of Delivery
	Where’s the Design?
	Eliminating Waste and Delays
	It’s in the Cloud
	Microservices
	Containers
	Separation of Duties in DevOps
	Change Control

	Chapter 3. Keys to Injecting Security into DevOps
	Shift Security Left
	OWASP Proactive Controls
	Secure by Default
	Making Security Self-Service
	Using Infrastructure as Code
	Iterative, Incremental Change to Contain Risks
	Use the Speed of Continuous Delivery to Your Advantage
	The Honeymoon Effect

	Chapter 4. Security as Code: Security Tools and Practices in Continuous Delivery
	Continuous Delivery
	Continuous Delivery at London Multi-Asset Exchange
	Injecting Security into Continuous Delivery
	Precommit
	Commit Stage (Continuous Integration)
	Acceptance Stage
	Production Deployment and Post-Deployment

	Secure Design in DevOps
	Risk Assessments and Lightweight Threat Modeling
	Securing Your Software Supply Chain

	Writing Secure Code in Continuous Delivery
	Using Code Reviews for Security
	What About Pair Programming?
	SAST: in IDE, in Continuous Integration/Continuous Delivery

	Security Testing in Continuous Delivery
	Dynamic Scanning (DAST)
	Fuzzing and Continuous Delivery
	Security in Unit and Integration Testing
	Automated Attacks
	Pen Testing and Bug Bounties
	Vulnerability Management

	Securing the Infrastructure
	Automated Configuration Management
	Securing Your Continuous Delivery Pipeline

	Security in Production
	Runtime Checks and Monkeys
	Situational Awareness and Attack-Driven Defense
	Runtime Defense
	Learning from Failure: Game Days, Red Teaming, and Blameless Postmortems
	Security at Netflix

	Chapter 5. Compliance as Code
	Defining Policies Upfront
	Automated Gates and Checks
	Managing Changes in Continuous Delivery
	Separation of Duties in the DevOps Audit Toolkit
	Using the Audit Defense Toolkit
	Code Instead of Paperwork

	Chapter 6. Conclusion: Building a Secure DevOps Capability and Culture
	About the Author

