
Analysis of the MIFARE Classic

used in the OV-Chipkaart project

Gerhard de Koning Gans

Radboud University Nijmegen

Supervisors Thesis 584
Jaap-Henk Hoepman Gerhard de Koning Gans
Flavio D. Garcia Version 1.00

June 2008

Abstract

The mifare Classic is the most widely used contactless smart card

in the market. Its design and implementation details are kept secret by

its manufacturer. We investigate the mifare Classic because this card

should become the new ticket, called the OV-Chipkaart, in the Dutch

public transport system.

This thesis studies the architecture of the card and the communication

protocol between card and reader. At the start of this research, there was

no information available on the mifare Classic protocol nor the imple-

mentation of the OV-Chipkaart. To perform this research we used the

Proxmark, a device that allows us to eavesdrop on the communication

between the reader and the card.

Our contributions are as follows. First, an ISO14443-A firmware imple-

mentation for the Proxmark that enables eavesdropping on the mifare

Classic, among other card types. Secondly, we present an overview of

the commands and responses of the protocol. Furthermore, we develop a

method to read data from the mifare Classic card without knowledge of

the secret key. Due to a weakness in the pseudo-random generator, we

are able to recover the keystream generated by the CRYPTO1 stream ci-

pher. We exploit the malleability of the stream cipher to read all memory

blocks of the first sector of the card. Moreover, we are able to read any

sector of the memory of the card, provided that we know one memory

block within this sector. Finally, and perhaps more damaging, the same

holds for modifying memory blocks.

1

Preface

In the past year I have had the privilege to perform research on an interesting
topic. A topic where I could combine theory and practice. It was my supervisor
Jaap-Henk Hoepman who suggested the OV-Chipkaart as subject of investiga-
tion. How does this card actually work? How does it communicate and, most
important of all, is it secure enough?

One important prerequisite at the start of this research was the possibility to
look into the communication of the OV-Chipkaart. At that point I ran into the
work of Roel Verdult who was already working on a device which should be able
to do this. Apparently, it was not that easy. Appropriate hardware became one
of the main problems. For months we worked in relative silence on this matter.
November 14th, Roel and I had some little success in Rotterdam. Finally we
got our hardware working.

It remained quiet until December 2007 when I received an e-mail from Jaap-
Henk. He pointed me to a presentation of two German researchers who had
found some major weaknesses in the mifare Classic chip. Well, this might
sound totally different from our research and it would not have gained much
attention if the OV-Chipkaart did not actually use the mifare Classic chip.
Dutch media took this very seriously, and soon many questions rose about the
security of the OV-Chipkaart. Then on January 14th, Roel Verdult showed that
it was possible to clone a disposable card. Meanwhile, I had already developed
an attack that allowed to read and modify memory contents without knowing
the secret key.

From that time on it remained busy. One reason was the press attention
generated on this topic. Another reason, we had already an interesting attack
and decided to write a paper on these findings. When this paper, the contents
of which is featured in this thesis, was finished, we got some interesting new
developments. More people got interested in the topic. At that point, it seemed
that with some effort we could get complete insight in the mifare Classic se-
curity. This thesis stops at that point and is not about that joint research. I
enjoyed the fact that I could participate in a group of enthuastic people who
joined Roel and me in some feverish investigations of the detailed workings of
the chip. This resulted in the dismantling of the mifare Classic. Which is, as
said before, described elsewhere.

2

Acknowledgements

Hereby I would like to thank a lot of people. First, I would like to thank Jaap-
Henk Hoepman, he made me enthusiastic for the subject and took good care
of the research direction. Although circumstances prevented him from joining
the latest research I would like to stress that it was his idea to look into the
OV-Chipkaart. Flavio Garcia, who was already working in this field and an
excellent second supervisor. Roel Verdult, who almost thought of terminating
his work on the hardware and thought of starting another research. Happily he
refrained from this idea. We spent both many hours on the hardware of this
research and succeeded. Then, I would like to thank the Kali brothers, as I call
Vinesh and Ravindra sometimes, for their enduring support from the beginning.

Furthermore, I would like to thank people who joined us later on in further
research on this topic. Ruben Muijrers, a student who just bumped into this,
has given an outstanding contribution to the research. The same counts for
Ronny Wichers Schreur. He was hard to stop in his attempts to improve the
attack. Peter van Rossum, his mathematical skill combined with the area of
computer security was very effective and I am convinced this saved us many
hours. Wouter Teepe, yes the guy who handled the media, and yes that also
means he had to handle the difficult questions. He did very well on that job.
Last but not least, I would like to thank Bart Jacobs for steering this sometimes
chaotic group and keeping us motivated.

There were many others involved. I hope you understand it is difficult to
name every person involved in this project. And also remember that important
people are not always listed.

Gerhard de Koning Gans, June 2008

3

Contents

1 Introduction 5

1.1 RFID . 5
1.2 Technology in Action . 6
1.3 Today’s Use . 6
1.4 Outline of this Thesis . 9

2 Research 10

2.1 Problem Definition . 10
2.2 Related work . 10
2.3 Our contribution . 11
2.4 Background information . 12

3 The Mifare Classic 14

3.1 Communication Layer . 14
3.2 Logical Structure . 15
3.3 Commands . 16
3.4 Security Features . 16

3.4.1 Authentication Protocol 17
3.5 Mifare Higher Level Protocol . 17

4 Hardware 19

4.1 Ghost . 20
4.2 OpenPCD and OpenPICC . 20
4.3 Proxmark III . 21

5 Software 24

5.1 Client . 24
5.2 Microcontroller . 26
5.3 FPGA . 28

5.3.1 Verilog . 29
5.3.2 FPGA Modes . 29

6 Case studies 35

6.1 Attacks on MIFARE . 35
6.1.1 Keystream Recovery Attack 36
6.1.2 Bruteforce Attack . 41
6.1.3 Key Recovery using Cryptanalysis 42

6.2 Proprietary Commands . 42

7 Conclusions & Recommendations 44

7.1 Observations . 44
7.2 Recommendations . 45

8 Further research 47

4

1 Introduction

In this thesis the focus is on Radio Frequency Identification (RFID) technology.
RFID is a technology that is used in many different applications and purposes.
Even though many people see RFID as a ‘new technology’, it has been in use
since World War II for military purposes. It was used to distinguish an allied
plane from an enemy plane [Fin03]. Nowadays, the technology has developed
to tiny digital labels that can be read out from varying distances1.

1.1 RFID

In short, RFID is a wireless technique to identify objects. The concept of wireless
communication has been adopted in many applications. Some examples are
radio, cell phones and the Global Positioning System (GPS). In case of RFID,
there is communication between a reader (also known as Proximity Coupling
Device (PCD)) and a transponder2 (also known as tag). Transponders are
available in different types, there are active and passive transponders. Where
the former have their own power source, like a battery, the latter use the power
they receive from the magnetic field of the reader. The advantage of a self-
powered transponder is that it is able to communicate over bigger distances.
The advantage of a passive transponder is that it has no battery, which can
unload, and its production can be really cheap.

Figure 1: RFID powder next to a
human hair

RFID has become a pervasive technol-
ogy as it has been adopted in a wide range
of applications. It is used as a replacement
of existing ‘analog’ products like barcodes.
It is also used in addition to existing iden-
tification methods like access cards, iden-
tity cards, passports and electronic labels.
The technology also introduces complete
new applications like RFID powder. RFID
powder has the size of 0,05mm by 0,05mm
and was announced by Hitachi on Febru-
ary 13th, 20073. Due to its tiny size it is
possible to hide it in a sheet of paper.

The combination of smartcards and
a contactless interface (RFID) results in
‘smart’ contactless cards. These kind of
cards are used in access control, electronic
purse, electronic ticketing and many other applications. In this thesis we focus
on these contactless cards. In the most simple applications a contactless card
just sends its Unique Identifier (UID). This is a passive contactless card that has
no computational power and it is just suitable for identification. There also exist
cards that contain a piece of memory that can be written (is re-programmable)
and can return the content of its memory on request of a reader. An example
is the mifare Ultralight card which has 512 bits of memory. But also more

1distance depends on the physical characteristics
2in this thesis most of the time we refer to it as a (contactless) card)
3http://www.hitachi.com/New/cnews/2007.html

5

advanced cards which have some computational power are available in the mar-
ket. These allow encryption like DES and AES, but also proprietary ciphers are
used. Think of the Sony FeliCa and the mifare Classic from NXP. Being this
mifare Classic that is our subject of investigation. mifare Classic is part of the
mifare product family of NXP Semiconductors. The mifare family consists of
the following cards: Ultralight, Classic, DESFire and SmartMX. The mifare

Classic card is available with 1KB and 4KB of memory. Currently it is the
most used contactless card worldwide4.

1.2 Technology in Action

Contactless smartcards like the mifare Classic are used for example in access
control and public transport ticketing. In London, the Oyster card, which is a
mifare Classic card, is used in public transport ticketing. Besides the ticketing
system of London there are many other systems that use the mifare Classic
chip. In the Netherlands, the OV-Chipkaart should become the new ticketing
standard for public transport. It is the first project where such a system is set
up nationwide.

1.3 Today’s Use

Although almost everyone uses RFID in everyday life, most people are not aware
of it. In most cases the technology is out of sight and hidden in applications.
Most of the time it is not even recognized and brings the ease of use it was
expected to bring. In this section we give some examples of applications that
use RFID technology.

Animal Identification In Animal Identification a tiny chip is implanted just
below the skin of an animal. This way it can easily be identified. Addition-
ally, medical information like vaccinations can be linked to this animal. The
ISO 11784/85 standard is used in Animal Identification. The information like
vaccination data needs to be looked up in a database. ISO 14223 defines how
to store this data on the implanted chip. This means that there is no need to
access a database, because all information is contained on the chip itself.

Car Keys Almost every new car comes with a remote control to open the car
remotely. In the early days the transmitted signal was just an identification num-
ber. The car checked for the correct number and opened the door if its number
and the one of the transponder (car key) matched. Nowadays, a popular system
for car keys is KeeLoq. KeeLoq is a technology from Microchip that uses RFID
technology. It uses a cryptographic algorithm to prevent eavesdroppers from
copying the car key and getting unauthorized access to the car. The operating
distance of the KeeLoq system is about 100 meters. The security of KeeLoq
has been broken. After cryptanalysis of the algorithm by Bogdanov [Bog07]
many attacks followed. The latest ones are very serious and use side-channel
information to recover the key of the controller. Even the master key can be
recovered.

4the mifare family represents 85% of the contactless smartcard market,
http://www.nxp.com

6

http://www.nxp.com

Figure 2: University entrance

Access Control Many buildings use
RFID for Access Control. A contactless
card is used for identification and authen-
tication. As such a card or token can be
stolen it is a good practice to add extra
security layers. One could, for example,
double-check the authentication by using
information about a person, think of bio-
metric information like a fingerprint or iris
scan. Another check could be done on
what someone knows, like a secret code.

Public Transport RFID has also found its way into Public Transport sys-
tems. In Hong Kong a contactless card system was introduced in 19975. In
London a contactless card for the metro was issued in 20036. There are many
examples of other cities around the world that use contactless cards in their
transport system. The first system where the contactless card should become a
national traveling card was the OV-Chipkaart in the Netherlands. Some reasons
that make RFID an attractive solution are:

• Travel information can be stored on the label or card.

• Low transaction times.

• No physical contact needed between reader and card. This prevents wear
and tear damage.

• Better pricing, the traveler pays for the traveled distance instead of the
crossed zones.

Some general disadvantages of RFID which also count for use in public transport
are:

• There are some privacy issues as most cards respond with a fixed unique
identifier. This way the traveler can be identified not only by the transport
system but also can be traced by an attacker equipped with a simple
reader. This is a violation of the location privacy of a traveler.

• Communication can be easily eavesdropped without being recognized by
the traveler.

• Relay attacks are possible by eavesdropping on the communication. In a
relay attack, one attacker is near the victim and communicates the signal
of the card of the victim to another attacker positioned at the gate. These
kind of attacks are shown to be feasible by Hancke and Kasper [Han05,
Kas06]. A possible countermeasure for these kind of attacks is to use
distance bounding protocols [HK].

Despite of these disadvantages, many transport systems use contactless cards.
A very popular card is the mifare Classic, which has been already in use for

5http://en.wikipedia.org/wiki/Octopus_card
6http://en.wikipedia.org/wiki/Oyster_card

7

http://en.wikipedia.org/wiki/Octopus_card
http://en.wikipedia.org/wiki/Oyster_card

years. Just as in the system of London the Dutch public transport, represented
by TransLink Systems (TLS), decided to use the mifare Classic in their im-
plementation. The card has been used in many systems around the world and
has never shown any failures on its security. Unfortunately, after some serious
analysis of the card it turned out that the mifare Classic is broken and can be
easily compromised. This means that many systems around the world need to
migrate to better protected cards within a little time frame.

Ticketing The FIFA World Cup tickets of 2006 in Germany are an example
of RFID use in ticketing. Timo Kasper showed [Kas06] that he could perform
a successful replay attack on these tickets. Of course the tickets were secured
twofold. First, the tickets physical appearance needed to be correct and second
the data stored on the Mifare Ultralight chip also needed to be correct.

Figure 3: Barcode and RFID label

Labels RFID is also used as replacement
for or in addition to barcodes. Barcodes
make it possible to quickly scan a serial
number of a product and obtain or store
information about it. This is especially
useful in logistics. For the barcodes to be
successfully scanned it is important that
the barcode, and therefore the product,
is correctly positioned with respect to the
reader. The use of RFID removes this con-
straint. It does only require the label to be
within a certain range. Depending on the
strength of the signal of the reader, this
range might be from several centimeters
to several meters. This allows applications
where a truck drives through a gate and all
products that leave the factory are scanned7.
The barcode label in Figure 3 is extended with an RFID chip which is visible
when we keep it against the sunlight. The RFID chip is visible in the middle
and the antenna windings at the border of the label.

Electronic Passport Electronic passports are basically just passports, but
with an embedded RFID chip. Again an application where RFID is used in
addition to an existing product. The electronic passport is developed to store
biometric data. This application uses a heavier, and therefore more expensive,
RFID chip. For sake of privacy the RFID chip uses a random UID every time
it gets selected. To prevent e-passports from being read by just anyone, an e-
passport uses a Basic Access Control (BAC) mechanism. This requires access to
printed information inside the passport. Weaknesses of this method are shown
in [HHJ+06, AKQ]. But even before authentication e-passports already leak
information about the nationality of a person [RMP07].

7http://www.qualitydigest.com/may07/articles/04_article.shtml

8

http://www.qualitydigest.com/may07/articles/04_article.shtml

1.4 Outline of this Thesis

This thesis is based on and contains parts of the paper ‘A Practical Attack on
the mifare Classic’ (forthcoming [dKGHG08]). Section 2 discusses the research
goals that we wanted to achieve. Then, Section 3 discusses the communication
technique that is used in the specific RFID system (mifare Classic) we want
to analyze. In Section 4 the currently available open-source tools are described
which can be used to analyze RFID communication. In the end, we choose
the Proxmark III of Jonathan Westhues, which needed some software extension
to meet our needs. This software extension is discussed in Section 5 and is
a general solution that can be used in any further research on ISO 14443-A
protocols. Then Section 6 discusses the protocol and the found weaknesses. A
practical attack is deployed on these weaknesses. Also, results of concurrent
research is addressed. Although, it turned out to be a lost race for the mifare

Classic, it is our responsibility to give recommendations on safer usage of the
card. We conclude with the conclusions and recommendations in Section 7.
Finally, further research is discussed in Section 8.

9

2 Research

2.1 Problem Definition

RFID does not solely bring ease, it also introduces new security risks. It is
a wireless application, which means the data is transferred over the air. This
introduces possibilities for eavesdroppers to eavesdrop on the communication
while the chance of being detected is low. In this thesis the protocol of the
OV-Chipkaart project and therefore mifare Classic is subject of investigation.
The mifare Ultralight and the mifare Classic 4k cards are used in the OV-
Chipkaart project. The goal of this research project is to perform an analysis
of the OV-Chipkaart protocol and get insight in the communication.

The communication in mifare Classic applications is encrypted and hides the
protocol messages. NXP does not give any information on the protocol used
by mifare 4k and mifare Ultralight applications. NXP has developed several
ASICs8 that are able to handle the protocol. Specifications on those ASICs talk
about the interface of the chip. The actual processing of the RF communication
is done by this ASIC.

In the Netherlands the company TransLink Systems (TLS) is implement-
ing the first travel card system that will operate nationwide called the OV-
Chipkaart. The project runs since 2002 and is, to some extend, comparable to
the Octopus card of Hong Kong. The Octopus card was introduced in Hong
Kong in 1997 to collect fares in the public transport system. Nowadays it is used
for many more applications in micro payments9. Participants in the project are
the Dutch government together with the carriers NS, Connexxion, RET, HTM
and GVB which serve 80% of the public transport in the Netherlands.

Problem Definition

1. How do tag and reader communicate?

2. Are there privacy problems?

3. How secure is it?

Research Goal

1. Reverse engineering the mifare protocol.

2. Reverse engineering an application specific protocol like the OV-
Chipkaart.

2.2 Related work

There have been several studies on RFID that focus on the contactless interface
of RFID cards and the limitations on the complexity of their design.

8Application Specific Integrated Circuit (ASIC)
9http://en.wikipedia.org/wiki/Octopus_card

10

http://en.wikipedia.org/wiki/Octopus_card

Relay attack A contactless interface means that relay attacks are possible
which is shown by Gerhard Hancke in [Han05] and Timo Kasper in [Kas06]. A
possible solution to prevent relay attacks is to make good restrictions on the
relay time using distance bounding protocols [HK].

Replay attack Another possible attack is the replay attack. This means that
the attacker replays an earlier recorded message. This is obvious a problem for
RFID tags that just send out an unique identification number like the VeriChip.
Jonathan Westhues describes on his website10 how to clone a VeriChip. He also
demonstrated that some Government buildings use access cards that just send
out a number. Replaying this signal was enough to open the door11.
Timo Kasper also carried out a replay attack in [Kas06].

Disposable RFID cards Sometimes RFID is used in a bad way. Siekerman
and van der Schee found a flaw in the disposable card of the Dutch Public
Transport system [SvdS07]. There was a wrong use of the locking functionality
of the card. The card has lock bits which prevent writing to the card memory
when set. It was possible to lock the lock bits which means that the system
could not lock portions of to the card memory anymore. The system did not
check for this situation. This is an example of a bad implementation.

Clone attacks The disposable card (mifare Ultralight) does not use any
encryption. The command set is known and the functionality and memory is
limited. Roel Verdult managed to program a cloning device (Ghost) in such
a way that it was recognized as a disposable card [Ver08]. The ‘advantage’ of
such a device is that a memory dump can be placed back when needed. Since
the back-end system did not check for any duplicates in the transport system
this attack was not recognized.

Reverse engineering Karsten Nohl and Henryk Plötz have partially reverse
engineered the mifare Classic cryptographic algorithm [NP07]. The mifare

Classic card is in use since 1994 which is quit a long time. Nohl and Plötz
managed to recover the cipher by removing layers from the chip and taking
pictures of the result with a 500x optical microscope. After determination of 70
different logical gates the rest was detected using image processing techniques.

2.3 Our contribution

We used a Proxmark III12 to analyze mifare cards and mount an attack. To
do so, we have implemented the ISO 14443-A functionality on the Proxmark,
since only ISO 14443-B was implemented at that time. We programmed both
processing and generation of reader-to-tag and tag-to-reader communication at
physical and higher levels of the protocol. The source code of the firmware is
available in the public domain13. Concurrently, and independently from Nohl
and Plötz results, we also noticed a weakness in the pseudo-random generator.

10http://www.cq.cx/verichip.pl
11http://www.youtube.com/watch?v=4jpRFgDPWVA
12http://cq.cx/proxmark3.pl
13http://www.proxmark.org

11

http://www.cq.cx/verichip.pl
http://www.youtube.com/watch?v=4jpRFgDPWVA
http://cq.cx/proxmark3.pl
http://www.proxmark.org

Our contribution is threefold: First and foremost, using the weakness of
the pseudo-random generator, and given access to a particular mifare card,
we are able to recover the keystream generated by the CRYPTO1 stream ci-
pher, without knowing the encryption key. Secondly, we describe in detail the
communication between tag and reader. Finally, we exploit the malleability of
the stream cipher to read all memory blocks of the first sector (sector zero) of
the card (without having access to the secret key). In general, we are able to
read any sector of the memory of the card, provided that we know one memory
block within this sector. After eavesdropping a transaction, we are always able
to read the first 6 bytes of every block in that sector, and in most cases also the
last 6 bytes. This leaves only 4 non revealed bytes in those blocks.

We would like to stress that we notified NXP of our findings before publishing
our results. Moreover, we gave them the opportunity to discuss with us how
to publish our results without damaging their (and their customers) immediate
interests. They did not take advantage of this offer.

2.4 Background information

This section gives a short overview on developments in mifare Classic security
to give some information on the context of this research.
For many years the mifare Classic card has been a cheap solution for appli-
cations where security was needed at low cost. With the announcement that
CRYPTO1 was revealed in December 2007 by Nohl and Plötz [NP07] a lot of
new developments on the security of the chip followed. At that time the attack
deployed in this thesis was already in an advanced state [dKGHG08]. Before
this announcement, in November 2007, the mifare Ultralight clone attack of
Verdult [Ver08] was already a fact. The attack on the Dutch public transport
system, with a cloned disposable card, hit the news on January 14th. The in-
formation that was disclosed by Nohl and Plötz was a very useful input for the
RFID research team of the Digital Security Group in Nijmegen. The Usenix
submission [NESP08] gives no information about the f -function (filter function).
The filter function hides the internal state of the Linear Feedback Shift Register
(LFSR). The Digital Security Group in Nijmegen recovered the missing crucial
information and revealed the complete CRYPTO1 stream cipher together with
the authentication and initialization protocols. At the same time an attack was
developed that did not need a full brute-force to recover the card keys. Then, on
March 10th, things went fast. Nohl developed a theoretical attack [Noh08] that
uses output bits of the reader which leaks information. This attack relies on the
fact that the sequence of the reader random is known and the current position of
the generator in this sequence is known. To reveal this it is required to know at
least one key. March 12th, the DS Group of Nijmegen demonstrates [Dig08] an
implementation of a developed attack that uses a precomputed table of about
half a gigabyte in size and 216 recorded authentication trials of a reader. The
announced dismantling of the algorithm has become true. After the practical
demonstration the attack of Nijmegen improved due to cryptanalysis on the
CRYPTO1 algorithm. Several weaknesses in the design make an attack possi-
ble that does not require any precomputation or brute-force. The current attack
speed14 is 12 keys per second. Another method is to use more general algebraic

14May 2008

12

attacks that are known for streamciphers. This algebraic method is announced
by Nicolas T. Courtois et al [CNO08].
To conclude this developments so far, the algorithm is recovered and it turned
out to contain serious weaknesses. The attack speed of 12 keys per second allows
a realtime attack scenario.

13

3 The Mifare Classic

Contactless smartcards are used in many applications nowadays. Contactless
cards are based on radio frequency identification technology (RFID) [Fin03]. In
1995 NXP, Philips at that time, introduced mifare15. Some target applications
of mifare are public transportation, access control and event ticketing. The
mifare Classic [NXP07b] card is a member of the mifare product family and
is compliant with ISO 14443 type A up to part 3. Part 4 defines the high-level
protocol and the implementation of NXP differs from the standard. Section 3.1
discusses the different parts.

3.1 Communication Layer

The communication layer of the mifare Classic card is based on the ISO 14443
standard [ISO01]. This ISO standard defines the communication for identifi-
cation cards, contactless integrated circuit(s) cards and proximity cards. The
standard consists of four parts.

Part 1 Physical characteristics

Part 2 Radio frequency interface power and signal interface

Part 3 Initialization and anticollision

Part 4 Transmission protocol

Part 1 describes the physical characteristics and circumstances under which the
card should be able to operate.
Part 2 defines the communication between the reader and card and vice versa.
The data can be encoded and modulated in two ways, type A and type B.
mifare Classic uses type A which defines Amplitude Shift Keying (ASK) for
reader to card communication. To encode data bits the reader stops to generate
a carrier for about 2µs with certain intervals. This corresponds with 100%
ASK because there is no amplitude at all in this period. The card to reader
communication for type A is done by load modulation. The card will add
a subcarrier or not, On-off Keying (OOK), to encode data bits. For more
detailed information about the communication on RFID we refer to the “RFID
Handbook” by Klaus Finkenzeller [Fin03].
Part 3 describes the initialization and anticollision protocol. The anticollision

is needed to select a particular card when more cards are present within the
reading range of the reader. After a successful initialization and anticollision
the card is in an active state and ready to receive a command. This state is
the starting point for part 4 of the standard and also the point where mifare

Classic differs from the ISO standard.
The mifare Classic data sheets [NXP07b] do not mention any commands that
could be send on this level nor does it specify answers from the card or the length
of the messages. The data sheets does define though the structure of the memory
of the card and how to organize it, which is explained in Section 3.2. The
modulation of commands is done by the mifare Classic reader chip. Knowledge
about the actual modulation is therefore not needed. Note that the PC to reader
interface is defined and provides commands and codes.

15http://www.nxp.com

14

http://www.nxp.com

3.2 Logical Structure

A mifare Classic card is in principle a memory card with few extra function-
alities. The memory is divided in data blocks of 16 bytes. Those data blocks
are grouped into sectors. The mifare Classic 1k card has 16 sectors of 4 data
blocks each. The first 32 sectors of a mifare Classic 4k card consists of 4 data
blocks and the remaining 8 sectors consist of 16 data blocks. Every last data
block of a sector is called sector trailer. A schematic of the memory of a mifare

Classic 4k card is shown in Figure 4.

Note that block 0 of sector 0 contains special data. The first 4 data bytes
contain the unique identifier of the card (UID) followed by its 1-byte bit count

check (BCC). The bit count check is calculated by successively XOR-ing the
separate UID bytes. The remaining bytes are used to store manufacturer data.
This data block is set and immediately locked by the manufacturer so its con-
tents cannot longer be modified. The reader needs to authenticate for a sector

Figure 4: mifare Classic 4k Memory

before any memory operations are allowed. The sector trailer contains the secret
keys A and B which are used for authentication. The access conditions define
which operations are available for this sector. Depending on which key is used
for authentication and the access conditions for this key, different restrictions
apply to the memory operations.
The sector trailer has special access conditions. Key A cannot be read by a
reader. In some configurations key B is readable. In that case the memory is
just used for data storage and key B cannot be used as a key for authentication.
Besides the access conditions (AC) and keys, there is one data byte (U) remain-
ing which has no defined purpose. A schematic of the sector trailer is shown in
Figure 5a. A data block is used to store arbitrary data or can be configured as
a value block. When used as a value block a signed 4-byte value is stored twice
non-inverted and once inverted. Inverted here means that every bit of the value
is XOR-ed with 1. This 4 bytes are stored from the least significant byte on the
left to the most significant byte on the right.

15

The four remaining bytes are used to store a 1-byte block address that can be
used as a pointer. The address is stored twice non-inverted and twice inverted.
Besides this specific format the access conditions should be configured such that
the specific value block commands are allowed for this block.

3.3 Commands

The command set of mifare Classic is small. Most commands are related
to a data block and require the reader to be authenticated for its containing
sector. The access conditions are checked every time a command is executed to
determine whether it is allowed or not. A block of data might be configured to
be read only. Another example of a restriction might be a value block which
can only be decremented.

Read and Write The read and write commands read or write one data block.
This is either a data block or a value block. The write command can be used
to format a data block as value block or just store arbitrary data.

Decrement, Increment, Restore and Transfer These commands are only
allowed on data blocks that are formatted as value blocks. The increment and
decrement commands will increment or decrement a value block with a given
value and place the result in a memory register. The restore command loads a
value into the memory register without any change. Finally the memory register
is transferred in the same block or transferred to another block by the transfer
command.

3.4 Security Features

The mifare Classic card has some built-in security features. The communica-
tion is encrypted by the proprietary stream cipher CRYPTO1.

Keys The 48-bit keys used for authentication are stored in the sector trailer
of each sector (see section 3.2). mifare Classic uses symmetric keys. Every
sector can have to keys. At least a key A is defined and Sector key A can never
be read. If key B is configured to be used for authentication, this key cannot
be read either.

(a) Sector Trailer (b) Value Block

Figure 5: Block contents

16

3.4.1 Authentication Protocol

According to the mifare documentation [NXP07b], mifare Classic makes use
of a mutual three pass authentication protocol that is based on ISO 9798-2.
However, it turned out that this is not completely true [?]. In this paper we
only use the first initial nonce that is send by the card. So the exact authen-
tication protocol used does not matter. The reader sends a request for sector
authentication and the card will respond with a 32-bit nonce NC . Then, the
reader sends back an 8-byte answer to that nonce which also contains a reader
random NR. This answer is the first encrypted message after the start of the
authentication procedure. Finally, the card sends a 4-byte response. As far as
our attack is concerned this description captures all the necessary information.

3.5 Mifare Higher Level Protocol

To find out what the mifare Classic communication looks like we made traces
of transactions between mifare readers and cards. In this way, we gathered
many traces which gave us some insights on the high-level protocol of mifare

Classic. In this section we explain a trace we recorded as an example, which is
shown in Figure 6. This trace contains every part of a transaction. We will refer

ETU SEQ sender

0 : 01 : PCD 26

64 : 02 : TAG 04 00

12097 : 03 : PCD 93 20

64 : 04 : TAG 2a 69 8d 43 8d

16305 : 05 : PCD 93 70 2a 69 8d 43 8d 52 55

64 : 06 : TAG 08 b6 dd































Anticollision

16504 : 07 : PCD 60 04 d1 3d

112 : 08 : TAG 3b ae 03 2d

6952 : 09 : PCD c4! 94 a1 d2 6e! 96 86! 42
64 : 10 : TAG 84 66! 05! 9e!















Authentication

396196 : 11 : PCD a0 61! d3! e3
208 : 12 : TAG 0d

8442 : 13 : PCD 26 42 ea 1d f1! 68!
5120 : 14 : PCD 8d! ca cd ea

2816 : 15 : TAG 06!























Increment & Transfer

1349238 : 16 : PCD 2a 2b 17 97

72 : 17 : TAG 49! 09! 3b! 4e! 9e! 5e b0 06 d0!
07! 1a! 4a! b4! 5c b0! 4f c8! a4!







Read

Figure 6: Trace of a card with default keys, recorded by the Proxmark III

to the sequence number (SEQ) of the messages we discuss. The messages from
the reader are shown as PCD (Proximity Coupling Device) messages and from
the card as TAG messages. The time between messages is shown in Elementary
Time Units (ETU). One ETU is a quarter of the bit period, which equals 1.18µs.
The messages are represented in hexadecimal notation. If the parity bit (which
is not explicitly shown in the trace) of a byte is incorrect, this is shown by an
exclamation mark. We will discuss only the most significant messages.

Anticollision The reader starts the SELECT procedure. The reader sends
93 20 (#3), on which the card will respond with its unique identifier (#4). The

17

reader sends 93 70 followed by the UID and two CRC bytes (#5) to select the
card.

Authentication The card is in the active state and ready to handle any higher
layer commands. In Section 3.4.1 we discussed the authentication protocol. In
Figure 6, messages #7 to #10 correspond to authentication.
The authentication request of the reader is 60 04 d1 3d (#07). The first byte
60 stands for an authentication request with key A. For authentication with key
B, the first byte must be 61. The second byte indicates that the reader wants to
authenticate for block 4. Note that block 4 is part of sector 1 and therefore this
is an authentication request for sector 1. The last two bytes are CRC bytes.

Encrypted Communication After this successful authentication the card
is ready to handle commands for sector 1. The structure of the commands
can be recognized clearly. Since we control the mifare Classic reader we knew
which commands were send. Message #11 to #15 show how an increment is
performed. The increment is immediately followed by a read command (#16
and #17).

The mifare Classic commands of the higher level protocol consist of 4 bytes
of the form XX YY ZZ ZZ. The first byte XX indicates the command type. The
second byte YY indicates the memory address on which the command should
be executed. A command is not always related to a specific memory address.
The halt command (50 00 57 cd) illustrates this. The last two bytes ZZ ZZ

are CRC bytes.

18

4 Hardware

An RFID system consists of a transponder (card) and a reader [Fin03]. The
reader contains a radio frequency module, a control unit and a coupling ele-
ment to the card. The card contains a coupling element and a microchip. The
control unit of a mifare Classic enabled reader is typically a NXP microchip
(e.g. RC500, RC632) with a closed design. This microchip communicates with
the application software and executes commands from it. Note that the actual
modulation of commands is done by this microchip and not by the application
software. The design of the microchip of the card is closed and so is the com-
munication protocol between card and reader. We want to evaluate the security
properties of the mifare system. Therefore we need hardware to eavesdrop a
transaction (Figure 7). It should also be possible to act like a mifare reader to
communicate with the card.

Figure 7: Experimental Setup

Available Hardware For many years there were no open source tools avail-
able on RFID technology. The RFID readers of the manufacturers allow a
limited set of commands. It was not possible to see the RF communication
with low-cost tools. Therefore, it was not possible to perform protocol analy-
sis at the lowest level. Recently there have been developments on open source
devices. There is a project called the OpenPCD project. Furthermore, there
is the Proxmark III that is available in the public domain. The University of
Nijmegen developed the Ghost. There are also other projects where hand-build
devices are used such as the Mole [Han05] and the Fake Tag [Kas06].

19

4.1 Ghost

Figure 8: Ghost

As the name of the device suggests, the
Ghost is a device which is capable to act
as an RFID card. The hardware was de-
veloped by Peter Dolron of the Univer-
sity of Nijmegen. At the start of this re-
search Roel Verdult was still busy with the
firmware of the device. It was not ready
yet for use in protocol analysis.

On January 14th, it was this device
that impersonated a disposable card of
the Dutch public transport system [Ver08].
This was a mifare Ultralight card that
was used on a test location in Rotterdam.
No encryption is involved with this card,
so all card content is readable. Since the
memory organization and the few com-
mands are explained in the NXP product
specification [NXP07a], it was possible to
implement this functionality on the Ghost.
The manufacturer guarantees that every
card has its own unique identifier. This
identifier cannot be changed. With the
Ghost this identifier can be easily spoofed.
This means that a reader can not com-
pletely relay on the identifier to authen-
ticate a card. And even worse, the mem-
ory content of the Ghost can be brought
back to earlier states, time after time. So
the locking mechanism [NXP07a], which
was meant to prevent abuse, unfortunately
fails.

The lack of authentication mechanisms on the mifare Ultralight card makes
it possible to read out a card. A complete memory dump can be made at any
time. Even if the card is blocked, all memory is still readable. The attacker
‘steals’ the card from another traveler without any constraints except that he is
close enough to read the card. There are some countermeasures possible which
are discussed in Section 7. But in case of this disposable card there is little that
can help. Card blocking might be a solution, but one of little comfort to the
customer.

4.2 OpenPCD and OpenPICC

The OpenPCD project was started by Harald Welte16 to develop a reader that
was able to do more than following the fixed possibilities of the manufacturer.

16http://www.openpcd.org

20

http://www.openpcd.org

It has an on-board mifare enabled controller (RC632), and at the same time
allows to by-pass this chip to modulate any arbitrary message.
Next to the OpenPCD there is also the OpenPICC. This is a card emulator

(a) OpenPCD (b) OpenPICC

Figure 9: OpenPCD

which has the ability to sniff communication. We used the OpenPICC at the
start of this research in order to gather samples from the mifare Classic readers
in the building. It was not possible to use the OpenPICC as an emulator. At
the time of this writing the OpenPICC is still under development.

We switched to another project because the hardware was not fully opera-
tional and we wanted to sniff the communication in both directions.

4.3 Proxmark III

The Proxmark III is a device developed by Jonathan Westhues. Its design is
very useful for RFID testing and research. All the needed information about
the hardware has been made public in May 2007. The firmware has also been
made public under a General Public License17. Although it had no support for
ISO 14443-A its design allows to implement this in the firmware. In this section
we will discuss the separate components of the Proxmark and their contribution
to a flexible design. It is possible to adjust the Digital Signal Processing to
support a specific protocol.
This device supports both low frequency (125kHz-134kHz) and high frequency
(13.56MHz) signal processing. This is achieved by implementing two parallel
antenna circuits that can be used independently. Both circuits are connected
to a 4-pin Hirose connector which functions as an interface to an external loop
antenna. For the purpose of acting like a PCD or reader it is possible to drive
the antenna coils with the appropriate frequency. This is not needed when the
Proxmark is used for sniffing or when it emulates a card. In that case the field
is generated by a reader.
The signal from the antenna is routed through a Field Programmable Gate
Array (FPGA). This FPGA relays the signal to the microcontroller and can
be used to perform some filtering operations before relaying. The software

17Hardware design and software is publicly available at http://cq.cx/proxmark3.pl

21

http://cq.cx/proxmark3.pl

implementation allows the Proxmark to eavesdrop communication between an
RFID tag and a reader, to emulate a tag and to emulate a reader.

Despite the basic hardware support for these operations the actual processing
of the digitized signal and (de)modulation needs to be programmed for each spe-
cific application. The physical layer of the mifare Classic card is implemented
according to the ISO 14443 type A standard [ISO01]. We had to implement the
ISO14443-A functionality since it was not yet implemented. This means we had
to program both processing and generation of reader-to-tag and tag-to-reader
communication in the physical layer and higher level protocol. To meet the
requirements of a replay attack we added the functions ‘hi14asnoop’ to make
traces, ‘hi14areader’ to act like a reader and ‘hi14asim’ to simulate a card. We
added the possibility to send ‘wrong’ parity bits. This was necessary because
we needed to be able to act like a real mifare Classic reader during encrypted
communication.

Figure 10: The Proxmark III

Analog to Digital Converter The analog signal that comes from the an-
tenna circuit is fed into an 8-bit Analog to Digital Converter (ADC). This
delivers 8 output bits in parralel which represent the current voltage retrieved
from the field.

Field Programmable Gate Array The 8 output pins from the ADC are
connected to 8 pins of the Field Programmable Gate Array (FPGA). An FPGA
has a great advantage over a normal microcontroller in the sense that it emulates
hardware. A hardware description can be compiled and flashed into an FPGA.
Because basic arithmetic functions can be performed fast and in parallel by an
FPGA it is faster than an implementation on a normal microcontroller. Only
a real hardware implementation would be faster but this lacks the flexibility of
an FPGA.

22

Microcontroller The microcontroller is responsible for the protocol part. It
receives the digital encoded signals from the FPGA and decodes them. The
decoded signals can just be copied to a buffer in the EEPROM memory. Ad-
ditionally, an answer to the received message can be send by encoding a reply
and communicating this to the FPGA.

23

5 Software

In this section we discuss the developed software to support ISO 14443A on
the Proxmark. The Proxmark is able to operate in three modes. These modes
are the sniffing mode, the card emulation mode and the reader mode. A few
requirements need to be fulfilled to implement these functions. First, we need
an underlying physical layer which takes care of the Digital Signal Processing
(DSP), this is implemented in the FPGA. Next, the modes of operation should
be implemented as functions on the microcontroller. Finally, a client should be
able to call the functions and display the results. This leads to a rough division
of the software into three parts:

• Client software, calls the functions implemented on the Proxmark, re-
sponsible for representation of the results. The client can be seen as the
application layer in the communication. It makes use of the underlying
protocol to receive information about an RFID card.

• Microcontroller software, implements the different modes of operation.
This is done by defining which protocol messages should be sent in which
format and in what order. This can be seen as the transport layer of the
communication.

• FPGA software, is responsible for the DSP and therefore responsible for
the physical layer of the communication.

Figure 11 shows the different components of the Proxmark application and
their different responsibilities. The processing and generation of the protocol
messages is partly done by the FPGA and partly by the Microcontroller (ARM).
The FPGA mainly does the edge detection and communicates to the ARM
whether the signal was high or low. The ARM then tries to decode the retrieved
bit stream using Manchester or Modified Miller. For generation of messages the
ARM will send a bit stream to the FPGA that represents the Manchester or
Modified Miller encoded message. The FPGA will modulate according to this
bit stream. The design choice to split this DSP in two parts was mainly because
of the limited capacity of the FPGA. It has not enough space to do flash a
design that does the signal processing and message decoding/encoding at the
same time. The next subsections are about the way different communication
modes are implemented in each different component.

5.1 Client

The client application is written by Jonathan Westhues [Wes] and connects to
the Proxmark via the standard HID protocol. The operating system on the
ARM does not represent a proper real-time operating system in the sense that
it still polls for things like USB packets. This way it is not possible to stream
the retrieved samples on real-time to the PC. So when the ARM retrieves a
command from the client it runs this command and stores any useful messages
in its memory buffer. After the command finishes the client should send a new

24

Figure 11: Proxmark Communication Layers

command to capture the data from the ARM buffer.
The Windows client has been extended with four more commands:

• hi14asim

Simulate an ISO 14443-A tag. In the code I simulate the anticollision
of a Mifare Classic 4K card. But this can be changed by programming
different response messages on the Proxmark.

• hi14areader

Act like a reader. The Proxmark generates a field and uses 100% ASK
and Modified Miller encoding to communicate with a card or tag. The
answers of the card are stored in a buffer (BigBuf) on the Proxmark and
can be downloaded by hi14alist.

• hi14asnoop

Sniff the communication between a reader and a tag. The communication
from both directions is captured and stored in a buffer (BigBuf) on the
Proxmark and can be downloaded by hi14alist.

• hi14alist

With this command any data captured by hi14areader or hi14asnoop can
be downloaded and displayed in the Windows client.

Client: Sniffing The command hi14asnoop starts sniffing the communica-
tion between a reader and card until the buffer (BigBuf) is full. In Figure 12
the result of the sniffing is captured by executing hi14alist. The result shows
the repeated anticollision loop. This indicates that the reader is just polling if
the card is still there. This anticollision loop walks through the following states:

• Reader: 26 −→ Card: 04 00

The reader sends an REQA (Request for type A) message on which the
card responded with its type.

25

• Reader: 93 20 −→ Card: 2a 69 8c 43 8c

The reader starts the anticollision to select a card and requests its UID.
The card responded with its UID. The last byte is the so-called BCC18

and is the result of XOR-ing the first four UID-bytes.

• Reader: 93 70 2a 69 8c 43 8c −→ Card: 08 b6 dd

The reader selects the desired card by sending 93 70 followed by the UID
of the card. If the card is successfully selected it will response with a
SAK19 which means that the card is now ready to handle commands of
the higher layer protocol. The SAK consists of one byte (08) that indicates
the card type and is followed by two CRC bytes.

Client: Card to Reader Communication The command hi14asim sets
the Proxmark in emulation mode. Until the button is pressed the device will
respond as programmed in the firmware. We programmed the Proxmark to act
like a mifare Classic 4k card. The reader (Omnikey 5121) runs the anticollision
and gets convinced that it communicates with an mifare Standard 4k20 card
and shows this in the client application of the reader. In Figure 13 the Proxmark
client and the third-party client are shown in one screenshot.

Client: Reader to Card Communication The command hi14areader

lets the Proxmark act like a reader. This means that the Proxmark drives the
antenna coils to generate a field. The field is removed with certain intervals of
2µs (as explained in Section 5.3) to communicate with a card. The Proxmark
switches between sending and listening. In Figure 14 only the anticollision phase
is executed and only the messages from the card (TAG) are stored.

5.2 Microcontroller

The microcontroller (ARM) implements the transport layer. First it decodes
the samples received from the FPGA. These samples are stored in a Direct
Memory Access (DMA) buffer. The samples are binary sequences that represent
whether the signal was high or low. The software on the ARM tries to decode
these samples. When the Proxmark is in sniffing mode this is done for both
the Manchester and Modified Miller at the same time. Whenever one of the
decoding procedures returns a valid message, this message is stored in another
buffer (BigBuf) and both decoding procedures are set to an unsynced state.
The BigBuf is limited to the available memory on the ARM. In our research
we reserved about 2KB of memory for the traces (Besides the traces the buffer
also stores some temporary data that is needed in the processing).
When the BigBuf buffer is full the function normally returns. A new function
call from the client is needed to download the BigBuf contents to the computer.
The BigBuf is especially useful for protocol investigation. Every single message
is stored in this buffer. When a card is emulated or when the Proxmark is
used as a reader the BigBuf can be used to store status messages or protocol
exceptions.

18bit count check
19Selection Acknowledged
20‘Classic’ and ‘Standard’ are both used for the same product

26

Figure 12: hi14asnoop

27

Figure 13: hi14asim

5.3 FPGA

The FPGA can be seen as dynamic hardware. It is possible to make a hard-
ware design and flash it into the memory of the FPGA. This gives some major
advantages:

• ‘Hardware’ errors can be corrected, the FPGA can be flashed with a new
hardware design.

• Although not as fast as a real hardware implementation, an FPGA is
faster than its equivalent on a microprocessor. That is, it is specialized
for one job.

The FPGA has two main tasks. The first task is to demodulate the signal
received from the ADC and relay this as a digital encoded signal to the ARM.
Depending on the task this might be the demodulation of a 100% Amplitude
Shift Keying (ASK) signal from the reader or the load modulation of a card.
The encoding schemes used to communicate the signal to the ARM are Modi-
fied Miller for the reader and Manchester encoding for the card signal. These
encoding schemes are explained further on in Section 5.3.2.
The second task is to modulate an encoded signal that is received from the ARM
into the field of the antenna. This can be both the encoding of reader messages
or card messages. For reader messages the FPGA generates a electromagnetic
field on pwr hi and drops the amplitude for short periods. A complete overview
of the IO pins of the FPGA is shown in Table 1.

28

Figure 14: hi14areader

5.3.1 Verilog

The hardware design that can be flashed into the FPGA is written in Verilog.
Verilog is a hardware description language which allows to describe a hardware
design in a C-style syntax.

5.3.2 FPGA Modes

The FPGA module can operate in different modes to allow reader and card
modulation and deliver useful samples to the microcontroller. The different
modes of operation are shown by Table 2. For eavesdropping we use SNIFFER

which delivers samples of the communication of both directions. To emulate a
card we alternately use TAGSIM LISTEN for retrieving and TAGSIM MOD for send-
ing messages. For reader emulation the alternating modes are READER LISTEN

for retrieving and READER MOD for sending messages.

FPGA: Sniffing When the FPGA is in sniffing mode it tries to demodulate
both the reader signal and the card signal simultaneously. The samples are
communicated over ssp din to the ARM.

FPGA: Card to Reader Communication The Frame Delay Time (FDT)
defines when a card is expected to answer. The FDT is given in periods of the
carrier wave21. Remember that one bit period in the communication between
reader and card takes 128 periods of the carrier wave. It is important, espe-
cially in the anticollision phase, that a card answer is calibrated to the timing

2113.56MHz in case of ISO 14443

29

hi iso14443a.v

Input
pck0 P36 not used
ck 1356meg P91 assigned to adc clk to get the speed of incoming ADC samples
ck 1356megb P93 same source as ck 1356meg
[7 : 0] adc d . . . Range of pins that come from the ADC
ssp dout P34 communication from ARM
cross hi P88 not used (not connected in FPGA design)
cross lo P87 low frequency application
[2 : 0] mod type - no physical connector
reset - no physical connector

Output
pwr lo P81 to generate a low frequency field
pwr hi P80 to generate a high frequency field
pwr oe1 P82 to modulate a subcarrier
pwr oe2 P83 only for low frequency
pwr oe3 P84 always off
pwr oe4 P86 to modulate a subcarrier
adc clk P46 the clock of 13.56MHz
ssp frame P31 frame clock of communication to/from ARM
ssp din P32 communication to arm
ssp clk P71 bit clock for communication to/from ARM
dbg P22 debug pin, any arbitrary signal can be asigned

Table 1: I/O of ISO 14443 type A module

grid of the reader. The reader generates the field and therefore determines the
clock of the card. The reference point for the card is the last dip in the reader
communication. If the last bit of the reader message is a zero, the modulation
will look like Figure 15a. If the last bit is a one the modulation will look like
Figure 15b.

(a) Last bit is zero (b) Last bit is one

Figure 15: Last bit in reader communication

The last two bit periods construct the End of Communication. The End
of Communication (EOC) terminates the data frame of the reader. Depending
on the last bit in communication (zero or one) the EOC contains a dip or not.
Notice that the difference between the two dips is half a bit period. This is 64
periods of the carrier wave and the FDT needs to be corrected for this.

FDT = 128n + 64i + 20 (1)

30

Modes of operation

Binary Mode Generates field

000’b FPGA HF ISO14443A SNIFFER No

Reports samples to ARM that contain both reader → card modulation and
card → reader modulation.
001’b FPGA HF ISO14443A TAGSIM LISTEN No

Reports samples to ARM of reader → card modulation.
010’b FPGA HF ISO14443A TAGSIM MOD No

Modulates the signal from the ARM into the reader field.
011’b FPGA HF ISO14443A READER LISTEN Yes

Reports samples to ARM of card → reader modulation.
100’b FPGA HF ISO14443A READER MOD Yes

Modulates the signal from the ARM into the field.

Table 2: Modes of operation

The FDT is defined in Equation 1 where n is the number of periods and i is
the last bit in reader communication, i ∈ {0, 1}. In the anticollision phase it
is required that all cards within the field will react at exactly the same time.
This allows the reader to detect collisions. Therefore n = 9 in the anticollision
phase. For all other reader messages n > 9. This means that an answer of the
card should always be aligned to the bit period of the reader22.

When the Proxmark emulates a card, the FPGA mode is set to TAGSIM LISTEN

when listening and TAGSIM MOD when modulating an answer. To align the an-
swer of the card to the bit period the last dip in the reader communication
needs to be detected. The FPGA resets the value of fdt counter after a dip
detection in the TAGSIM LISTEN mode. When fdt counter reaches a certain
value23 the fdt elapsed register is set to one.
The microcontroller sends its answer that has to be modulated into the field to
the FPGA. This answer cannot be modulated into the field when n < 9. There-
fore the FPGA buffers the received bits from the ARM into a 48-bit buffer (See
Figure 16). The pointer ptr points to the first binary one that enters the buffer.
Every 1,14µs the bits in the buffer shift one position to the left. The ptr keeps
pointing to the first binary one that was received. The new value entering the
buffer comes from ssp dout which is a pin (See Table 1) directly connected to
the ARM.
The ssp clock makes sure that every 1,14µs the ARM sends another encoding
bit. The modulated signal mod signal depends on the contents of the FDT
buffer and whether the minimal FDT elapsed. This is illustrated in Figure 16
by an AND-gate.
In the anticollision phase it is important for the emulation to be quick and
answer on n = 9. However, in practice some readers still accept anticollision
messages with n > 9. The software on the ARM is quick enough to modulate
answers on n = 9 for the anticollision phase. When more complex computations
are needed the ARM is not able to react on n = 9. This means that the FDT

22every 128 cycles of the carrier
23close to 1172 which is the FDT for n = 9 and i = 0

31

buffer remains empty (contains only zeros). When the value of fdt elapsed

turns to one when the minimal FDT has expired the first binary one (encoding
bit) from the ARM will be modulated into the field immediately. We do not
want this because the signal needs to be aligned with the bit grid of the reader
(a bitperiod starts every 8 encoding bits). So when the buffer is still empty
at n = 9 the value of ptr starts cycling from 7 to 024 and gets fixed as soon
as a binary one enters the buffer. This way every answer of the ARM will be
correctly aligned by the FPGA to the bit grid of the reader (no matter how
much time the ARM needs to prepare its answer).

Figure 16: FDT Buffer

Manchester The signal from card to reader is Manchester encoded. The
bit period is split into a first half and second half. A binary one is encoded by
a high first and a low second half. A zero is encoded the opposite way with
a low first and a high second half. The first few bits of the Manchester signal
in Figure 17 are decoded as 100100000’b. The Manchester encoding is com-

Figure 17: Manchester Encoded Signal

pletely done by the ARM. The ARM prepares a bitstring that is communicated
to the FPGA over ssp dout. One bit period is represented by 8 bits. The
FPGA has no more responsibility than the load modulation according to this
bit string. This is done by modulating a subcarrier in the field. This subcarrier
is fsubc = fc/16 where fc = 135600kHz and thus the subcarrier frequency is
847.5kHz. On every negative edge of the adc clk the negedge cnt register gets

24bit 0 is the rightmost bit in the buffer

32

incremented. Multiplying or dividing a binary number by 2 means that the
bits in the register shift to the left or right respectively. A division of fc by
16 equals 24, this means we can use the 4th bit of negedge cnt to modulate
fsubc. The negedge cnt register gets incremented on every negative edge of

Figure 18: How to generate a 847.5kHz clock

the adc clk which is running on 13.56MHz. So the negedge cnt[0] bit has a
clock of 13.56MHz divided by two already. In Figure 18 the generated signals
for the first four bits of negedge cnt are shown. negedge cnt[3] delivers the
requested 857.5kHz signal.

assign modulating_carrier = (mod_sig_coil &

negedge_cnt[3] & (mod_type == 3’b010));

The modulating carrier on its turn is assigned to pwr oe425. The mod sig coil

relays the Manchester encoded signal. The mod sig coil value is related to
ssp dout by the fdt buffer (See Figure 16).

FPGA: Reader to Card Communication The FPGA is able to relay the
bitstream received on ssp dout to pwr hi. The modulation technique used is
100% ASK. The used encoding scheme is Modified Miller which will be explained
later on in this section.

assign pwr_hi = (ck_1356megb &

(((mod_type == 3’b100) & ~mod_sig_coil) ||

(mod_type == 3’b011)));

Here ck 1356megb is a 13.56MHz clock that is assigned to pwr hi. It will only
be assigned when the FPGA is in reader mode (3’b100) and there is no dip
(∼mod sig coil) or the FPGA is in listening for card mode (3’b011). The
mod sig coil value is related to ssp dout by the fdt buffer (See Figure 16).

Modified Miller The signal from reader to card is encoded by the Mod-
ified Miller encoding scheme. This scheme basicly consists of three ways to
represent a bit in a given bitperiod. The electromagnetic field is removed com-
pletely for 2,28µs. The card uses the power from the field to operate but is able
to come over this short drop because of a capacitor. In the ISO14443 [ISO01]

25pwr oe4 is connected to the antenna

33

standard the three different bitperiod representations are denoted X, Y and Z.
The first bitperiod in Figure 19 is of type X, the second of type Y and the third
of type Z. In short, to encode a one just drop the signal after half a bitperiod
and to encode a zero do not drop the signal at all unless the elapsed time after
the last drop is a bitperiod or more. If the latter is the case then drop at the
beginning of the bitperiod. Just like the Manchester encoded signal also the

Figure 19: Modified Miller Encoded Signal

Modified Miller message is bitstring encoded by the ARM. The preparation of
the desired message is completely done by the ARM and the FPGA just routes
the incoming signal from the ARM in the right time interval and uses it to drive
the antenna coil or not.

34

6 Case studies

Nohl and Plötz [NP07] discovered that the pseudo-random generator, used to
generate the nonces in the authentication, is weak. During our experiments, in-
dependently, we also discovered this weakness of the pseudo-random generator
by requesting many nonces from the card, at arbitrary times. This experiment
showed that a ‘random’ nonce repeats a few times per hour. This is just by
chance because Nohl and Plötz discovered that the nonce is generated by an
Linear Feedback Shift Register (LFSR) which shifts every 9.44µs. This is ex-
actly one bit period in the communication. Therefore a random nonce could
theoretically reappear after 0.618s, if the card is queried at exactly the right
time.

Without knowing the cryptographic algorithm, only an online brute force
attack can be mounted, trying all possible keys in an actual authentication run
between a reader and a card. Because of the communication delay, this would
take 5ms for each attempt. An exhaustive key search would then take 16,289,061
days, which equals about 44,627 years.
When the cryptographic algorithm is known, an off-line brute force attack can
be mounted using a few eavesdropped traces of an authentication run. Nohl
and Plötz state that with dedicated hardware of around $17.000 this would
take about 1 hour. For this attack to work, some known plaintext is required.
Our analysis provides this plaintext.

It is however possible to attack the mifare Classic in another way, that does
not require recovering the key. This attack, that we describe here, uses the
weakness of the pseudo-random generator to recover the keystream.

6.1 Attacks on MIFARE

There are several attacks possible on mifare Classic. The first practical attack
was carried out by us in [dKGHG08] and was the topic of this master studies,
so will be explained in detail further on. This attack recovers used keystream
in a transaction between a reader and a card. Due to a weak pseudo-random
generator the same keystream can be used twice. For this attack the secret key
remains unknown and is not needed. Also the algorithm used can be unknown.
Other attacks have the secret key as target and try to recover the key. One way
to do this is a brute-force attack. Until now a brute-force attack could only be
performed on-line against a card because the CRYPTO1 algorithm was secret.
The algorithm is recovered partially by reverse engineering of the hardware
chip [NP07] and the rest could be revealed by protocol analysis [Dig08, NESP08].
An off-line attack is now one of the possibilities but still takes a lot of time (one
week per key) or is expensive ($17.000) [NP07]. Cryptanalysis showed that there
are weaknesses in the design of the algorithm which make it possible to recover
12 keys per second [GdKGM+08]. Also algebraic attacks are possible. In this
section we visit the different attacks known so far.

35

6.1.1 Keystream Recovery Attack

In this section we develop a method to recover the keystream that is used in
an earlier recorded transaction between a reader and a card. As a result the
keystream of the communication will be recovered. For this attack we need to
be in possession of the card. The following reasons make this attack interesting:

1. Our attack provides the known plaintext necessary to mount a brute force
attack on the key.

2. Using our attack we recovered details about the byte commands.

3. Using the recovered key stream we can read card contents without knowing
the key.

4. Using the recovered key stream we can also modify the contents of the
card without knowing the key.

Keystream Recovery To recover the keystream we exploit the weakness on
the pseudo-random generator (Figure 20). We also use the fact that this random
nonce in combination with only one valid response of the reader determines the
continuation of the keystream. This allows us to replace for example the address
byte of a read command as shown on the bottom of the diagram in Figure 20.
For this attack we need complete control over the reader (Proxmark) and access
to a (genuine) card. The attack consists of the following steps:

1. Eavesdrop the communication between a reader and a card. This can be
for example be in an access control system or public transport system.

2. Start a new communication with the same card, but now using the Prox-
mark. Make sure that the card will use the same keystream as in the
recorded communication. This is possible because the card repeats the
same nonce in reasonable time, and we completely control the reader.

3. Modify the plaintext, such that the card receives a command for which
we know plaintext in the response (e.g., by changing the block number in
a read command).

4. For each segment of known plaintext, compute the corresponding keystream
segment.

5. Use this keystream to partially decrypt the trace obtained in 1.

6. Try recovering more keystream bits by shifting commands.

The plaintext P1 in the communication is XOR-ed bitwise with a keystream
K which gives the encrypted data C1.

It should not be possible to control the initialization of the stream cipher
in a way that it generates the same key stream again. Because of the weak
pseudo-random generator it is possible to retrieve the same card challenge over
and over again. When it is possible to use the same keystream on a different
plaintext P2 and either P1 or P2 is known, then both P1 and P2 are revealed.

P1 ⊕ K = C1

P2 ⊕ K = C2

}

C1 ⊕ C2 ⇒ P1 ⊕ P2 ⊕ K ⊕ K ⇒ P1 ⊕ P2 (2)

36

Figure 20: Exploit for the pseudo-random generator

37

The weak pseudo-random generator makes it possible to replay an earlier recorded
transaction. We can flip ciphertext bits to try to modify the first command such
that it gives another result. Another result gives us another plain text. The
attack is based on this principle. Mention that you have to do it this way be-
cause you do not know the command codes. Example values for Equation 2 are
shown in Figure 21. These show which steps should be taken in order to change
the address byte like in the diagram shown in Figure 20.

Figure 21: Example plaintext modification

Known plaintext When a sector trailer is read the card will return logical
‘0’s instead of key A because key A is not readable. If key B is not readable
the card returns logical ‘0’s there as well. See Figure 4 for the location of key
A and key B.

We made sure that the trace we recorded did only contain read commands.
The first command of a transaction executed after an authentication can be
derived by the structure of the trace. Each command takes a block address as
parameter. This decreases the possible plaintexts for those first four bytes to 4
or 16 depending on the size of the sector.

Because the first command in the trace is known the keystream for those
positions is also known. Obviously this allows to send another command than
recorded in the original trace. When the first command is transformed into a
‘read sector trailer’ it is certain that the first 6 bytes in the response are logical
‘0’s.

A logical step would now be to replay the same authentication again and try
to execute a command that will return only an ACK or NACK26. Because this
would shift the keystream 40 bits27. There will be enough known keystream
left to construct a ’read sector trailer’ command. Because we know (a part of)
the plaintext in the response of the card this will recover more keystream bits.

26ACK = Acknowledged, NACK = Not Acknowledged
274-byte command, 4 times 8 bits + 4 parity bits and a 4-bit response makes it a 40-bit

shift

38

This attempt does not work when we send commands that result in a NACK.
The protocol aborts when any incorrectness is detected. This might be in case
of access violation or errors in the communication. Messages that are too short,
too long or have wrong parity bits are not accepted. Also unknown commands
are rejected. Because the card halts after such messages we can not send a read
command and recover more keystream bits.

Keystream Mapping The data is encrypted bitwise. When the reader sends
or receives a message, the keystream is shifted the number of bits in this message
on both the reader and card side. This is needed to stay synchronized and use
the same keystream bits to encrypt and decrypt. The stream cipher does not
use any feedback mechanism. Despite that, when we tried to reveal the contents
of a message sequence using a known keystream of an earlier trace, something
went wrong. We recorded an increment followed by a transfer command. We
used this trace to apply our attack and changed the first command to a read

command which consists of 4 command bytes and delivers 18 response bytes.
Together with the parity bits this makes it a 198 bit stream. The plaintext was
known and therefore we recovered 198 keystream bits.

When we used this keystream to map it on the original trace of the increment

(Figure 22), it turned out that the keystream was not in phase after the first
command. The reason was the short 4-bit answer of the card that is not followed
by a parity bit. In our original trace we are now half way the first response byte.
This means that after 4 more bits we arrive at the parity bit in the original trace.
However, in our new trace we are then half way the next command byte. To
correct this we needed to throw away the keystream bit that was originally used
to encrypt the parity bit.
But what to do when we need to decrypt a parity bit in the new situation and
we are half way a byte with respect to the first trace? The solution is to encrypt
the parity bit with the next bit from the recovered keystream and use this same
keystream bit to decrypt the next data bit.
From this we can conclude that parity bits are encrypted with keystream bits
that are also used to encrypt databits.

INCREMENT ACK VALUE TRANSFER ACK

Plaintext c1 04 f6 8b 0a 01 00 00 00 bb 4a b0 04 ea 62 0a

Ciphertext 4c 88 31 bc! 0a! e2 79!2a!14 35!6f! 04!81 2d!1e! 0c!

Figure 22: Recovering the Keystream and Commands

The following method successfully maps the keystream on another message
sequence as we described above.
Take the recovered keystream and strip all the keystream bits from it that were
at parity bit positions. The remaining keystream can be used to encrypt new
messages. Every time a parity bit needs to be encrypted, use the next keystream
bit without shifting the keystream, in all other cases use the next keystream bit
and shift the keystream.
So parity bits are always encrypted with the next available keystream bit, but
the keystream is not shifted in that case.

39

Authentication Replay As shown in Section 3.1 the high-level protocol
starts always with an authentication. This can be an authentication with key
A or B (see table 24). So after a successful anticollision phase (part 3 of ISO
14443 [ISO01]) the only option will be to send an authentication request 60 (for
key A) or 61 (for key B)28. In response to this authentication request the card
will send a challenge nonce NC . In Section ?? it is shown that the card repeats
NC within reasonable time. Because no other varying information is used in the
authentication like timestamps this enables a replay of an authentication.
To replay an authentication we first need a trace of a successful authentication
between a genuine mifare reader and card. An example of an authentication
followed by one read command is shown below.

1 PCD 60 03 6e 49

2 TAG e0 92 93 98

3 PCD ad e7 96! 48! 20! 22 df 93

4 TAG bf 06 91! 82

5 PCD b5! 05! 47 3f

6 TAG 3f 14! 4f e9! 86 38! 96! 85 3e!

f3 e3! 3d! eb! 2b! a2 d4 dd 76!

After this recorded authentication between card and reader, we make sure that
the memory of the card is not modified. This ensures that when the memory of
the card is read it will return the same plaintext. Now we will act like a mifare

reader and try to initiate the same authentication. In short:

1. We recorded a trace of a successful authentication between a genuine card
and reader.

2. We send authentication requests (#1) until we get a nonce that is equal
to the one (#2) in the original trace.

3. We send the recorded response (#3) to this nonce. It consists of a valid
response to the challenge nonce and challenge from the reader.

4. We retrieve the response (#4) to the challenge from the card.

5. Now we are at the point we where we could resend the same command
(#5) or attempt to modify it.

After step 4 the card is in a state where we have successfully authenticated for
(in this case) sector 0 (block 3). Now it expects a command for this sector.
If we send the same command we recorded earlier, we get the same encrypted
response as in the original trace. Therefore the keystream is the same.

Reading a Sector We will show that it is possible to read sector 0 from
a card without knowing the key. We only need one transaction between a
genuine mifare reader and card. Every mifare Classic card has some known
memory contents. The product information published by NXP [NXP07b] gives
this information.
When a sector trailer is read the card will return logical ‘0’s instead of key A
because key A is not readable. If key B is not readable the card also returns
logical ‘0’s. It depends on the access conditions if key B is readable or not. The

28Except from sending a HALT command

40

Figure 23: Recovering Sector 0

access conditions can be recovered by using the manufacturer data. Block 0
contains the UID and BCC followed by the manufacturer data. The UID and
BCC cover 5 bytes and are known. The remaining 11 bytes are covered by the
manufacturer data. Some investigation on different cards (mifare Classic 1k
and 4k) revealed that the first 5 bytes of the manufacturer data almost never
change. These bytes (MFR1) cover the positions of the access conditions (AC)
and the unknown byte U, as shown in Figure 23. This means that the keystream
can be recovered using the known MFR1 bytes by reading block 0 and block 3
(sector trailer) subsequently. Remember that the access conditions are stored
twice in 3 bytes. Once inverted and once non-inverted. This way it is easy to
detect if we indeed revealed the access conditions. The unknown byte U can be
in any state when the card leaves the manufacturer but appears to be often 00

or 69.
The access conditions tell us whether key B is readable or not. In many

cases key B is not readable. In the Netherlands the mifare Classic 4k card is
used in the public transport system. The first 5 bytes of the manufacturer data
(MFR1 in Figure 23) recovered the access conditions for sector 0. Because the
access conditions for the sector trailer define key B as not readable, we know
the plaintext is zeros. Hence the whole sector trailer was revealed and therefore
the contents of the whole sector 0 were revealed as well.

6.1.2 Bruteforce Attack

If the security of a cryptosystem only relies on the secrecy of its keys this means
that knowledge of the used algorithm should not compromise a secret message
that was encoded by this algorithm. Back in the 19th century Kerckhoff stated
that a crypto system must be able to fall into the hands of the enemy without
any inconvenience [Ker83]. Experience has shown that this is a good design
principle when building secure systems. A system is well designed if the only
practical attack is to try every possible key to retrieve the secret. This is called
a bruteforce attack. In December 2007, Karsten Nohl and Henryk Plötz an-
nounced the complete recovery of the CRYPTO1 algorithm [NP07].
Until that time a brute force attack on a mifare Classic card was possible but
not really feasible. The cards logic contains the algorithm and therefore can tell
whether a key is correct or not. Although the keys are only 48-bit in size which
is obviously too small [MBW96], this is compensated by the delay that is intro-
duced by the communication in the authentication procedure. Knowledge of the
CRYPTO1 streamcipher enables an off-line brute force attack. This eliminates

41

the delay that is caused by the communication with the card in an on-line attack
where every attempt takes about 6 milliseconds. An on-line attack on one card
takes more than 44 thousand years to try all 248 possible combinations. This
seems safe but the main reason why this takes so long is because of the secrecy
of the algorithm. This is also called security by obscurity. Now the algorithm
is revealed the key remains the only secret in the mifare Classic encryption.
The key size of 48-bit is too small to prevent a successful brute force attack
within reasonable time. Back in 1995 it was already strongly discouraged to
implement symmetric encryption systems that use 56-bit keys [MBW96]. Nohl
and Plötz stated in December 2007 [NP07] that depending on the amount of
money available a brute force implementation recovers the sector keys within a
week, day or even within one hour.

6.1.3 Key Recovery using Cryptanalysis

Less than half a year later other attacks were demonstrated by the Digital
Security Group of the Radboud University Nijmegen [GdKGM+08] and Courtois
et al [CNO08]. These attacks show that it is possible to retrieve keys much
faster than in a bruteforce attack due to several weaknesses in the design of the
algorithm. In both proposed attacks it is now a matter of seconds on a normal
laptop.

6.2 Proprietary Commands

At the time this research was performed, we were not aware that the command
codes, which we revealed with our attack, could already be found in example
firmware of NXP29. Note that the firmware refers to the command codes sent
from PC to reader. Our research shows that (perhaps obviously) these are the
same command codes sent from reader to card.

We used a card in transport configuration with default keys and empty data
blocks to reveal the encrypted commands used in the high-level protocol. All
the commands send by the reader consist of a command byte, parameter byte
and two CRC bytes. We made several attempts to reveal the command by
modifying the ciphertext of this command. The way to do this is to assume
we actually know the command. With this ‘knowledge’ we XOR the ciphertext
which gives us the keystream. To check if this is indeed the correct keystream,
we XOR it with a new command for which we know the response. If we guessed
the initial command right the response of the card will be that known response.
This method revealed the commands shown in Figure 24.

Now, one could try to replay the same authentication again and try to ex-
ecute a command that returns an ACK or NACK in order to recover more
keystream. Because an ACK or NACK is only 4 bits in size, it leaves some
spare bits for which we know the keystream. We can use these bits to exe-
cute another command for which we now know the plaintext. This delivers
more known keystream as a result, and this method can be applied repeatedly.
However, this approach does only work if a decrement, increment or transfer is
allowed. These are the commands that return an ACK and therefore are in total
shorter than the read. We can only send valid commands because otherwise the

29http://www.nxp.com/files/markets/identification/download/MC081380.zip

42

http://www.nxp.com/files/markets/identification/download/MC081380.zip

protocol aborts. The read command returns 16 data bytes and 2 CRC bytes.

Figure 24: Command set of mifare Classic

On a write command the card returns a 4-bit ACK, this indicates that the card
is ready to receive 16 data bytes followed by 2 CRC bytes.
The decrement, increment and restore commands all follow the same procedure.
The card indicates that it is expecting a value from the reader by sending a 4-bit
ACK response. This value is 4 bytes and is followed by 2 CRC bytes. For the
restore this value is send but not used. The value is send as YY YY YY YY ZZ

ZZ, where YY are the value bytes and ZZ the CRC bytes.
Finally, a transfer command is send to transfer the result of one of the previous
commands to a memory block. The card response is an ACK if it went well.
Otherwise it responds with a NACK.

The 4-bit ACK is 0xa. When a command is not allowed the card sends 0x4.
When a transmission error is detected the card sends 0x5. The card does not
even give a response at all if the command is of the wrong length. The protocol
aborts on every mistake or disallowed command.

43

7 Conclusions & Recommendations

We have implemented a successful attack to recover the keystream of an earlier
recorded transaction between a genuine mifare Classic reader and card.

We used a mifare Classic reader in combination with a ‘blank’ card with
default keys to recover the byte commands that are used in the proprietary
protocol. Knowing the byte commands and a sufficiently long keystream allowed
us to perform any operation as if we were in possession of the secret key.

We managed to read all memory blocks of the sector zero of the card, without
having access to the secret key. In general, we were able to read any sector of
the memory of the card, provided that we know one memory block within this
sector. Moreover, after recording a valid transaction on any sector, we were able
to read the first 6 bytes of any block in that sector and also the last 6 bytes if
key B is read only. Similarly, we are able to modify the information stored in a
particular sector.

7.1 Observations

Weak pseudo-random generator It is known that good pseudo-random
generators are needed for cryptographic protocols to provide secure communi-
cation. By empirical research we found that the nonces generated by the mifare

Classic card reappeared very often. This was the main reason why our attack
developed in [dKGHG08] was successful.

Keystream recovery is possible The keystream recovery compromises mi-

fare Classic in three ways. First and foremost, using the weakness of the
pseudo-random generator, and given access to a particular mifare Classic card,
the keystream generated by the CRYPTO1 streamcipher can be recovered, with-
out knowing the key used. Secondly, the exact details of the communication be-
tween reader and card can be revealed. The command codes and structure that
so far were unknown are revealed. Although the command codes can be found
in firmware code that controls the mifare PCD chip, this research confirms
that they are actually sent by the mifare PCD chip. And last, the malleability
of the streamcipher is used to read all memory blocks of the first sector (sector
0) of the card (without having access to the secret key). This gives us the same
possibilities as if we were in possession of the secret key. So, modification is also
possible with this recovered keystream.

Consequences First of all, all data stored on the card (except the keys them-
selves) should no longer be considered secret. In particular, if the mifare Classic
card is used to store personal information (like name, date of birth, or travel in-
formation), this constitutes a direct privacy risk. The security risk is relatively
low because in general the security is guaranteed by the secrecy of the keys.
Note that in particular we are not able to clone cards, because the secret keys
remain secret.

Secondly, the integrity and authenticity of the data stored on the card can
no longer be relied on. This is quite a severe security risk. This is particularly
worrying in applications where the card is used to store a certain value, like
loyalty points or, even worse, some form of digital currency. The loyalty level or

44

the value stored in the electronic purse could easily be increased (or decreased,
in a denial-of-service type of attack).

Thirdly, knowledge of the plaintext (or the keystream) is a necessary condi-
tion to perform brute force (or other more sophisticated) attacks to recover the
secret key. This allowed us to develop a very efficient attack to recover arbitrary
sector keys of a mifare Classic card [dKGHG08].

7.2 Recommendations

Migrate to a more advanced card The main recommendation to solve the
problems with the mifare Classic is unfortunately to migrate to another card
type. The contactless smartcard market has developed more advanced cards
with cryptographic schemes like DES, AES and even public-key cryptography
over the years. For the implementation of new systems the mifare Classic
is often chosen for its low price on one hand, and because it is thought to
provide a reasonable level of security on the other. With respect to the latest
developments, mifare Classic is not a serious candidate anymore. It is not said
that, because it is possible, every system using mifare Classic is immediately
under attack. The question is what the award will be if an attacker breaks into
the system. Now the mifare Classic does not deliver the protection for which
it was once sold it is needed to migrate to another product. Which product this
should be depends again on the balance between level of security and price.

Make sure abuse is detectable Because migration takes a lot of time and
should be prepared carefully it is useful to reduce the chance of abuse by some
countermeasures.
While it has become relative easy to copy a mifare Classic card, it is not said to
be impossible to detect this kind of attack. We have made an implementation of
the CRYPTO1 algorithm on the Proxmark III which emulates a card completely.
This means that there are two ‘cards’ in the system that are completely equal
to the system. The back office should log all transactions. In most systems this
is already the case. Detection is then done by finding contradictions in these
logs. It is not possible for person A to enter building B1 and building B2 at
the same time. On the other hand it is possible for person A to enter building
B1 and after some time enter building B2. Then it is hard to detect if a cloned
card was used.

A mechanism that detects the use of duplicate cards in any case is easy to
achieve. The encryption provided by the card is broken, so store data encrypted
with an encryption scheme like AES. When an attacker reads the data, he still
can not tamper with it as long as he is not in possession of the right AES key.
This way it is possible to store a counter on the card that gets incremented in
every transaction by the reader. The card holder nor a possible attacker is able
to increment this counter by one and store the new encrypted value because
they do not posses the AES key. The latest value of this counter is stored in
the back office. Every new transaction the counter is compared to the one in
the back office and if they match nothing is wrong. If the value in the back
office appears to be a successor of the value on the card this means that another
card (duplicate or original) caused a transaction and increased the counter.

45

Figure 25: Detection of duplicate cards

This way it is possible to detect if there have been two or more duplicate cards
used. However, it does not tell which card is the duplicate and which one the
original. A card can be blocked immediately if a duplicate is detected. In larger
systems, like public transport, this might be infeasible because of the delay that
is introduced by communicating everything back to the back office. Then a card
(and its duplicate) can be blocked afterwards and will be caught later on.

Additional checks A system does not only consist of RFID cards entering a
building. In case of access control it is good practice to double check the entrance
of a building by security personal, camera’s etc. There are also systems that
use mifare Classic in combination with a code which the user needs to enter30.
This are all methods that decrease the level of success for an attacker.

Use feedback in algorithm In any stream cipher it is wise to use some kind
of feedback of the encrypted plaintext. This prevents malleability. Modifica-
tions in the messages are detected because the continuation of the keystream is
different which results in a corrupt message. This is done in the DESFire.

Security by Obscurity Security by obscurity means that a security system
is kept secret by its manufacturer. There is an analogy between how a door lock
works and how an encryption algorithm works. If a system is well designed and
based on strong security principles there is no need to keep the algorithm (or
the lock design) secret. The only secret is the key. The mifare Classic card is
a typical example where the system is kept secret. Once it has been revealed
more people can have a critical look on its design. It is known for a long time
that this is a bad way of securing a system [Ker83]. This case of the mifare

Classic card adds more evidence to this principle.

30http://webwereld.nl/articles/49360/shell--easypay-immuun-voor-mifare-lek.html

46

http://webwereld.nl/articles/49360/shell--easypay-immuun-voor-mifare-lek.html

8 Further research

The problems concerning the mifare Classic are not only due to a weak design of
the cryptographic algorithm. It is an old chip in comparison to similar products
in the market. Back in 1994, when mifare Classic was introduced, the chip
complexity was significant lower than any developed chips nowadays. It is a
challenge to find methods and design protocols that provide sufficient security,
privacy and anonymity given the constraints of an RFID system.

The results on the mifare Classic card might indicate that similar products
could bear the same problems. One could think of the Sony FeliCa card which
has comparable functionality. Sony claims on its website that it uses ‘industry
standard’ security algorithms. The communication speed is 212kbps, twice
as fast as the 106kbps of mifare Classic, and is based on other modulation
schemes. More advanced cards of the mifare family like the DESFire and
the SmartMX seem to have better protection against the attack we developed.
Basically, the initialization of the protocols uses a random with a higher entropy
than the mifare Classic. Additionally, they use some sort of feedback that
involves the plaintext. This makes it harder to recover the keystream. Of
course, also these cards have to deal with limiting constraints, but at least the
used encryption scheme is public. Which of course should not be confused with
the way it is implemented. Furthermore, there are much more RFID systems
which are relatively cheap and provide proprietary security like the mifare

Classic. Research on randomness of the used pseudo-random generators and
the protocol should point out whether the products actually deliver the claimed
security or not. The development of new research tools like the OpenPCD,
OpenPICC, Proxmark, Ghost, Mole and many others show that the technology
becomes cheaper over the years. Inherently, the number of people that look into
the used protocols and security mechanisms will grow. Therefore, it is needed
to detect design flaws in early stages to prevent abuse.

The mifare product family is also capable of communication speeds faster
than the 106 kbps we have implemented in the Proxmark. It would be very
helpful for additional research to make the Proxmark compatible with these
higher speeds.

Nowadays it is possible to buy contactless cards that implement encryption
schemes like AES. So the question is not any more if this is possible at all.
However, for authentication and initialization one needs good pseudo-random
generators. It is challenging to design a pseudo-random number generator that
is heavily restricted by its environment (timing and power from reader).

The focus in the field of RFID is more on security instead of privacy. While
one of the main results of the many RFID tags used today is that goods become
traceable. First, because logistic companies want so, but also in cases when
products leave the logistic chain and the customer is not aware of the RFID tag.
This is only one example and many others are available. To provide privacy it
is of course possible to use a random identifier, perform an authentication to
the tag and then retrieve the real product ID under encryption. But these

47

implementations are too expensive in systems that trace goods by millions of
tags. Easier concepts are presented that introduce tags which send a random
number concatenated with the hash of that random and their identifier (or
secret). This gives strong privacy, but lacks performance. For a worst-case
look-up the system has to compute the hashes for all tags in the system. This
increases linearly. There are solutions to this by using trees, but these sacrifice
some privacy [NE]. Then the question is if it possible to maintain strong privacy
on low-cost RFID tags.

48

References

[AKQ] Gildas Avoine, Kassem Kalach, and Jean-Jacques Quisquater.
ePassport: Securing International Contacts with Contactless
Chips. to appear.

[Bog07] A. Bogdanov. Cryptanalysis of the KeeLoq block cipher. Techni-
cal report, Cryptology ePrint Archive, Report 2007/055, Febru-
ary 16, 2007.

[CNO08] Nicolas T. Courtois, Karsten Nohl, and Sean O’Neil. Algebraic
Attacks on the Crypto-1 Stream Cipher in MiFare Classic and
Oyster Cards. Cryptology ePrint Archive, Report 2008/166,
2008. http://eprint.iacr.org/.

[Dig08] Digital Security Group, Radboud University Nijmegen. Disman-
tling contactless smartcards. Press release, March 2008.

[dKGHG08] G. de Koning Gans, J.H. Hoepman, and F.D. Garcia. A Practical
Attack on the MIFARE Classic. Arxiv preprint arXiv:0803.2285,
2008.

[Fin03] Klaus Finkenzeller. RFID Handbook. John Wiley and Sons, 2nd
edition, 2003.

[GdKGM+08] Flavio D. Garcia, Gerhard de Koning Gans, Ruben Muijrers,
Peter van Rossum, Roel Verdult, and Ronny Wichers Schreur.
Dismantling Mifare Classic. Forthcoming, 2008.

[Han05] G.P. Hancke. A practical relay attack on ISO 14443 proxim-
ity cards. Technical report, University of Cambridge Computer
Laboratory, 2005.

[HHJ+06] J.-H. Hoepman, E. Hubbers, B. Jacobs, M. Oostdijk, and
R. Wichers Schreur. Crossing Borders: Security and Privacy
Issues of the European e-Passport. In Hiroshi Yoshiura, Kouichi
Sakurai, Kai Rannenberg, Yuko Murayama, and Shinichi Kawa-
mura, editors, Advances in Information and Computer Security.
International Workshop on Security (IWSEC 2006), volume 4266
of Lecture Notes in Computer Science, pages 152–167. Springer
Verlag, 2006.

[HK] G.P. Hancke and M.G. Kuhn. An RFID distance bounding pro-
tocol. Conference on Security and Privacy for Emerging Areas
in Communication Networks–SecureComm 2005.

[ISO01] ISO/IEC 14443. Identification cards - Contactless integrated cir-
cuit(s) cards - Proximity cards, 2001.

[Kas06] Timo Kasper. Embedded Security Analysis of RFID Devices.
Master’s thesis, Ruhr-University Bochum, 2006.

[Ker83] Auguste Kerckhoffs. La cryptographie militaire. Journal des
sciences militaires, IX, 1983. pp. 5–38, Jan. 1883, and pp. 161–
191, Feb. 1883.

49

http://eprint.iacr.org/

[MBW96] R. Rivest B. Schneier T. Shimomura E. Thompson M. Blaze,
W. Diffie and M. Wiener. Minimal Key Lengths for Symmetric
Ciphers to Provide Adequate Commercial Security. 1996.

[NE] K. Nohl and D. Evans. Quantifying Information Leakage in Tree-
Based Hash Protocols. Proceedings of the Conference on Infor-
mation and Communications Security, pages 228–237.

[NESP08] Karsten Nohl, David Evans, Starbug, and Henryk Plötz. Reverse-
Engineering a Cryptographic RFID Tag. 2008. USENIX Security
Symposium. San Jose, CA. 31 July 2008.

[Noh08] Karsten Nohl. Cryptanalysis of Crypto-1. 2008. Published on
March 10th.

[NP07] Karsten Nohl and Henryk Plötz. Mifare, Little Security, De-
spite Obscurity. Presentation on the 24th Congress of the Chaos
Computer Club in Berlin, December 2007.

[NXP07a] NXP Semiconductors. Functional specification contactless single-
trip ticket IC, April 2007.

[NXP07b] NXP Semiconductors. MIFARE Standard 4kByte Card IC func-
tional specification, February 2007.

[RMP07] H. Richter, W. Mostowski, and E. Poll. Fingerprinting Passports.
2007.

[SvdS07] P. Siekerman and M. van der Schee. Security Evaluation of the
disposable OV-chipkaart v1.6. Master’s thesis, University of Am-
sterdam, 2007.

[Ver08] Roel Verdult. Proof of concept, cloning the OV-Chip card. Tech-
nical report, Radboud University Nijmegen, 2008.

[Wes] J. Westhues. Hacking the prox card. RFID: Applications, Secu-
rity, and Privacy, pages 291–300.

50

	Introduction
	RFID
	Technology in Action
	Today's Use
	Outline of this Thesis

	Research
	Problem Definition
	Related work
	Our contribution
	Background information

	The Mifare Classic
	Communication Layer
	Logical Structure
	Commands
	Security Features
	Authentication Protocol

	Mifare Higher Level Protocol

	Hardware
	Ghost
	OpenPCD and OpenPICC
	Proxmark III

	Software
	Client
	Microcontroller
	FPGA
	Verilog
	FPGA Modes

	Case studies
	Attacks on MIFARE
	Keystream Recovery Attack
	Bruteforce Attack
	Key Recovery using Cryptanalysis

	Proprietary Commands

	Conclusions & Recommendations
	Observations
	Recommendations

	Further research

