Security analysis of RFID tags

Roel Verdult
June 25, 2008

Abstract

Usage of Radio Frequency Identification is winning ground everywhere.
Advantages of contactless communication compared to chips with contact
are transaction speed, durability and ease to use. A major disadvantage
is that messages can be intercepted from a distance by a malicious user.
Eavesdropping of unsecured transmissions can be a serious security risc.
This research describes a way to intercept this information. Furthermore,
it shows the vulnerabilities in different major RFID systems and demon-
strates how to exploit them.

Supervisors:
Flavio D. Garcia
Peter van Rossum

version: 1.00

Preface

The process during my master thesis was a experience I will never forget. The
hard work of developing an embedded device almost let me decide to stop the
project after the first months. I can still remember when my supervisor proposed
the project, which was back then, still a theoretical idea of how we wanted to
investigate contactless smartcards. At the start of my thesis there was within
our university not much knowledge availble about hardware development that
could supported me. But when I finally managed to communicate with the
device I immidiatly started working on my case studies. It was nice to have
a fellow student Gerhard de Koning Gans working next to me starting to do
a similar project during his master thesis. We helped each other on various
grounds during our development.

The fuss about OV-chipkaart suspended my graduation for some weeks, but
it was very interesting to see how a topic like security suddenly gets so much
media attention. The awareness that is invoked by our statements about the
OV-chipkaart helps the people to understand their need for privacy and security.

Finally I want to thank Ravindra Kali, Vinesh Kali for there technical sup-
port during my research.

Contents

1 Introduction 4
2 Research Question 5
3 Hardware 5
3.1 Reader 5
3.2 Tag. . . . o e 6
3.3 Ghostdevice 7
4 Related work 7
5 1S014443-A Protocol 8
5.1 Overview 8
5.2 Anti-collision 10
5.3 Mifare 12
5.3.1 Mifare Ultralight 12

5.3.2 Mifare Classic. 13

6 Software 15
6.1 Ghost firmware 15
6.1.1 Environment 15

6.1.2 Design Lo 15

6.1.3 Usage 17

6.2 RfdSpy 17
6.2.1 Environment, 17

6.2.2 Design oo 18

6.23 Usageo 18

6.3 Protocol between RfidSpy and Ghost 18
7 Attacks 20
7.1 Sniffing 20
7.2 Emulation 21
7.3 Maninthemiddle 21
7.4 Mifare Ultralight 22
8 Case studies 22
8.1 University parking oo oL 22
8.2 Public transport system Lo L. 24
8.2.1 Disposable ticket o Lo 25

8.2.2 Subscriptioncard L L. 30

8.3 Entrance accesso 32
9 Conclusions 34

10 Appendix A: Full decrypted check-out trace OV-chipkaart 38

11 Appendix B: Blueprint, design and components of the Ghost 41

1 Introduction

Radio-frequency identification (RFID) is an automatic identification method,
used for remotely storing and retrieving data. RFID can be used to transmit
contactless small amounts of data over a distance. This identification technique
is widely used to replace legacy systems like bar codes, entrance tickets and
personal passes. There are low, high and ultra high frequency standards. A few
ISO standards describe the details of these techniques. The most widely used
technique is the High Frequency proximity identification described in the ISO
14443! standard[1]. This standard is used in most contact less smart cards.

RFID systems are used in different environments. Each application has its
own security requirements. A simple product identification system clearly needs
less security than an access control gateway. The focus of this research is on
systems that need at least some kind of protection.

The ISO standards for RFID systems provide no security features like au-
thentication, integrity, authorization or availability. Though it is possible to
implement a secure communication layer on top of the default transmission
layer.

The question that raised here is: if there is no standard for this security, does
this mean that every company need to invent its own layer. What we see in
practice is that one company designs a system which is adapted by many other
companies to keep production costs low and to provide (some) compatibility
with other parties.

To investigate the security of RFID systems it is required to know the fea-
tures, limitations and processes used during the communication. These subjects
will be explained in chapters 3,4 and 5. A reader that is already familiar with
this information can skip these chapters.

To be able to investigate different systems on a very low-level, special hard-
ware is required. This hardware was not available for an affordable price at the
beginning of this research. The solution was to in-house develop the required
hard- and software. The result a device called the Ghost a fully working RFID
eavesdropper and tag emulator. Since this was a substantial part of this re-
search, this thesis will describe and explain parts of the design decisions that
were made during this process.

The field tests performed during this research are described in the case stud-
ies presented in the latter chapters of this document. One of these case studies
led to a publication in a top Security conference Esorics[4]. The Ghost played
a major role in reverse engineering a proprietary cryptographic algorithm of
widely used RFID tags.

ITwo methods of modulation are described in this standard, variant A and B. The research
in this thesis focuses on the modulation of variant A. Reference to this part of the ISO is given
by 14443A.

2 Research Question

What are the security features of different RFID systems which are using the
most widely used ISO-14443A(1-3) standard?

Security features concerning RFID devices are very important. Because
of the wireless interface it does not require direct contact it is vulnerable for
unnoticed communication between a tag and a malicious reader. Nowadays
there are billions of tags sold that are based on the ISO-14443A standard. More
than 70 percent of them are based on the Mifare Ultralight or Classic technology.
They are used in systems like public transport and access control systems. The
impact is very high when the security features are very weak. For example,
access cards and tickets which are linked to personal bank-accounts could be
faked in such a way that they are not distinctuishable by a system in any way.
This is the main reason why the focus of this research focuses on this particular
type of RFID systems.

3 Hardware

The usage of ISO-14443A RFID devices requires two different
hardware parts. The reader, in the ISO referred to as proxim-
ity coupling device (PCD). This reader is an embedded device
and contains an antenna to communicate at the frequency of
13.56 Mhz. The reader creates a electronic field which is used
as a power source by a transponder tag, in the ISO referred
to as proximity integrated circuit card (PICC). An example
of a reader and a tag are shown in Figure 1.

In addition to these two standard hardware parts I have
developed the firmware and software for a third device, the
Ghost. With this Ghost I was able to analyse and test several
systems at a very low-level of communication.

Figure 1:
Reader and Tag

3.1 Reader

The reader can be connected to a computer or used as a standalone device.
When it is controlled by a computer it often only acts as an antenna which is
used to communicate to a tag. The requests performed by the reader are often
very simple and is working on a fast operation speed. Cheaper solutions often
use no security layer at all at the transmission level.

The reader uses the electronic field to communicate to the tag by dropping
the field for 2.28us. The drops are at different time intervals which modulates
the data transmission to the tag. The modulation is done according to the
Modified Miller encoding technique. Figure 2 shows a modulation example. The
modulation of one bit takes 9.44us, this is called a bitperiod. The bitperiods
are seperated by vertical lines in the figure. To transmit a zero there are two

options, which is determined by the last bitperiod. Drop the field at the start
of the bitperiod when the last transmitted bit was also a zero. Do not drop
the field when the last transmitted bit was a one. The modulation of a one is
always the same, drop the field in the middle of the bitperiod.

ol 1]ofolof1]1]

Figure 2: Example of modified miller encoding

Because the electronic field will only drop for a few micro-seconds a simple
capacitor in the tag can overcome power interruption. The maximum range of
this field is about four inches.

When the reader tries to find a tag nearby it will send continuously a welcome
command for a tag that could be near. When the tag is in the field it will respond
as specified in the ISO-14443A. From this moment a communication session is
started. If there are multiple tags in the range of the reader, it will try to select
each one in turn so it will be able to handle all the available tags.

3.2 Tag

There are two different kind of tags: passive and active ones. The passive tags
are cheaper ones and do not have any power supply, so they completely rely on
the electronic field of the reader. This limits the features of the tag. Active tags
possess a small battery as a power supply. They often work with a longer range
and do more complex computations. Most of the ISO-14443A tags are passive,
since the reception range is small and their applications are often very simple.
I mostly worked with tags that look like a credit card. They have the antenna
embedded into the border of the card. The more expensive tags are often of
the same material as a credit card, while the cheaper, disposable tags, are just
simply maded out of paper. The tag will use a different way for communication.
The tag can not drop down the electronic field like the reader, in stead, it will
set up some resistancy in this field that can be detected by the reader. This
resistancy is active in particular time frames which modulates the data. For
this the Manchester encoding is selected and is woven into the electronic field
that is created by the reader by using the subcarier frequency 847.5 Khz. This
frequency is a divisor of the main 13.56 Mhz frequency.

Figure 8 shows the modulation of a few bits using the manchester encoding.
The Manchester encoding is easier to understand than the Modified Miller en-
coding. The bitperiod is split up into two parts. When a zero is transmitted the
first half of the carier wave stays intact while the second half is inteferred by a

small field resistance. Modulation of a one is the complement of the modulation
used during the transmission of a zero.

ot]o]ofo]1]o]

Figure 3: Example of manchester encoding

3.3 Ghost device

The Ghost, showed in Figure 4, is actually a simple
programmable RFID tag. It can communicate with
the reader the same way a tag does. The major
difference though is that the microchip on the device
is programmable. I have written a firmware that
provides you with features that control the complete
communication bytes between the reader and the tag. This way it is possible
to eavesdrop information or impersonate tags. It has a RS232 interface which
can be connected to the serial port of the computer. This is useful for logging
transferred frames and for updating the configuration of the ghost. The Ghost
has its own 9V battery. Because of this it is possible to let it work standalone.
When the messages are known beforehand by the user, so only a reproduction
is needed, no computer interface is required. This way it is compact and easy
to hide from human observers, which could be useful in some cases. Blueprints
of the Ghost are available in the Appendix B of this document.

Figure 4: Ghost

4 Related work

There are a few projects covering similar subjects. The master thesis Embed-
ded Security Analysis of RFID Devices[5] written by Timo Kasper describes a
project which is closely related to this research. Kasper focuses more on the
development of the custom hardware which can do a different type of analysis.
Technical details about the encoding and decoding techniques are very good
described in this paper. He successfully tested the hardware he developed on
the World Championship Soccer entrance tickets.

Kirschenbaum and Wool developed a low cost Extended-Range RFID Skimmer|[6].
This article shows a very easy way to increase the eavesdropping range.

Ross and Goto developed a very primitive device [7] that communicates with
low frequency RFID devices. They were able to trick a specific access control

system and grant themself unauthorized access without the original tag. Heydt-
Benjamin and his team were able to compromise the security of the first credit
cards containing contactless features[8].

Gerhard Hancke developed a device which applied a succesful relay attack[9].
This is a man in the middle attack where the original tag is replaced by a tag-
emulator. This emulator gathers the requests and is connected via a wireless
connection to a mallicious reader. This reader communicates with the original
tag, sends the requests and gathers the answers. For this he used one of the
widely used Mifare Classic tags. The communication between the tag and the
reader is encrypted, the encryption is not harmed because the hardware only
records the communication waves and plays them through an emulator back to
the reader.

5 1S014443-A Protocol

The ISO 14443A[1] is the most widely used RFID standard in the world. This
is the main reason why this research is focused on this ISO standard. Though
results can be generalized to similar proximity 13.56 MHz systems that use
the second modulation variant ISO 14443B[1] standard. In addition they can
be roughly applied to similar systems operating at the 125 kHz frequency ac-
cording to the ISO 15693[2] and the 13.56 Mhz Vicinity cards with a longer
communication range as described in the ISO 11785(3].

The features, timing and messages of reader and tag are specified in the
ISO 14443-3 standard. This chapter explains the features of the protocol very
briefly. This is necessary to understand the communication between reader and
tag.

5.1 Overview

This section introduces the basics of the protocol which are related to this
research. The tag must implement some elementary actions like the anti-collision
and halt command. The anti-collision provides a way to get the unique identifier
(UID) of a tag even if there are more tags in the field. The halt command
disables a tag. After disabling, the tag will not respond anymore unless it is
waked up again.

The features from a tag can be detected in the anti-collision. The reader
selects and process the tags that are compliant to its system. The scheme in
Figure 5 shows a some paths that could be taken during a tag-processing cycle.
The horizontal layers annotate examples of systems. The example systems are
explained more in detail during the case studies.

University Parking
(Simple ID Check)

Yes
Done

Public Transport System Y
(Mifare Classic)
(Mifare Ultralight)

No

Biometric Passport
(Smart Card Based)

Figure 5: RFID example system processing a tag

5.2 Anti-collision

The anti-collision procedure is always per- (Sepemien S)
formed as startup communication between a
reader and the tag. The anti-collision is re- /
quired to detect which n§arby tags'are évall— SR T
able. Every tag has a different unique iden- (Request for tag) (Wake up tag)
tifier (UID). To avoid any collisions in the
communication, the ISO standard defines the
anti-collision protocol. Figure 6 presents the Receive ATQA
schematic overview of an anti-collision select (Answer to request)
sequence.

The first action comes from the reader Y
(PCD). It probes for any tag (PICC) that is Send SELECT

(Select cascade level 1)

within reading distance. The probing can be
done in two ways. It can send a REQA or
a WUPA. For these messages a 7-bits com- 3

C e Receive SAK
mands are transferred. To distiguish from (Salact sEknoWIedts)
other communications the command is 1 bit
shorter than any other command. The REQA
(request) command requests all the tags to
respond in order and let the reader know of Process SAK Done—-
their existence. The WUPA (wakeup) com-
mand wakes up tags that are in the field but
disabled earlier, this means they are not ac-
tive at the moment. Send SELECT

When no tag responds, the REQA com- slctsnse eateadks level)
mand is send over and over again. The delay
between commands is proposed but in prac-
tice implemented differently by every manu-
facturer. Experiments show that some readers use one second while others use
just a few milliseconds. As expected, the smaller the interval, the faster a tag
can be moved through the field. This interval is not the only aspect that in-
fluence the speed, but it seems to be a rather large factor. Apart from this
the speed also depends on the length, number and intelligence of the frames
transferred between reader and tag.

A tag in the field will respond on a REQA or WUPA command with the
ATQA Dblock (answer to request). This will initiate the anti-collision procedure
in the reader. The reader will try to find all the tags in the field (this could
be multiple tags). Every tag contains a UID (unique identifier) which offers a
distinction of between tags. The UID could exist of 4, 7 and 10 bytes. The
ATQA will supply the bit-length of the UID. In the anti-collision process the
reader uses a binary search to detect multiple tags. With the retrieved overview
the reader can filter out the tags that are not compliant to the system.

After the reader has received the ATQA block, it will send a SELECT (se-
lect) command with the valid UID starting bit(s) responding to the current

Figure 6:
Anti-collision sequence

10

request of the binary search. When a UID of the tag matches on the prefix of
these bits it will respond with its complete UID. If multiple tags are responding
simultaneously on the SELECT command, a stricter prefix with more specified
starting bits is send by the reader. As search area gets smaller ultimately an
individual transponder can be identified. This process is visually displayed in
Figure?.

l Start = 1. iteration

’0_‘0_‘

1

|0 1 o 1 o

oli[o]i[o] o] o
|

2. iteration 3. iteration

Figure 7: Binary search tree

If the mask singles out only one tag, the reader sends a new SELECT com-
mand with the specified UID of this tag. The tag responds with a SAK (select
acknowledge) command. After the SAK command this cascade level is com-
pleted, but there could be multiple levels. For 7 UID bytes, the SEL command
will be transferred two times and for 10 bytes it is transmitted three times.
When the SAK describes no more UID bytes are available the anti-collision
ends and the tag will turn to active state. In this state the tag processes all
commands until a HALT (disable) command is received from the reader.

The anti-collision as defined in the ISO is always using non-encrypted data.
This results in that it is vulnerable to several attacks like replay, relay and
forging.

The next trace is observed from the communication between the reader and
the tag during the anti-collision. For this example a tag is used with an UID
length of 7 bytes. This means that two cascade levels are used during the
anti-collision. The communication is observed from the reader side.

write len=1, data= 26 => Welcome (REQA)

read: len=2 val= 44 00: 0K => Respond (ATQA)

write len=2, data= 93 20 => Select cascade 1 (SEL)
read: len=5 val= 88 04 f2 52 2c: 0K => CT, UID, BCC

write len=7, data= 93 70 88 04 f2 52 2c => Select available tag (SEL)

11

read: len=1 val= 04: OK => Select Acknowledge (SAK)

write len=2, data= 95 20 => Select cascade 2 (SEL)
read: len=5 val= bl ec 02 80 df: OK => UID, BCC

write len=7, data= 95 70 bl ec 02 80 df => Finish select (SEL)

read: len=1 val= 00: OK => SAK without cascade bit set
Layer 2 success (ISO 14443-3 A) => UID = 04 f2 52 bl ec 02 80

CT => Cascade tag byte (88), signals that the UID is not complete yet
BCC => Checkbyte, calculated as exclusive-or over 4 previous bytes

5.3 Mifare

In RFID tags often As proprietary protocols and commands are used. A good
example of a proprietary protocol is the MIFARE[10] chip produced by the
manufacturer NXP (formerly Philips). The protocol sequence and commands
in this product were not publicly known, until Gerhard de Koning Gans recov-
ered them using his practicle attack[12]. Because MIFARE is sold as solution
to manufacturers of readers and tags, some information can be found in their
documentation, though it is still far from a complete specification. This makes
research harder since they can only be reviewed as a blackbox. The NXP prod-
ucts I used during my research are the Mifare Ultralight and the Mifare Classic.

5.3.1 Mifare Ultralight

The cheapest alternative chip embedded in the tag that is produced by NXP
is the Ultralight variant[11]. It does not provide any encryption layer for the
communication. It has a very small amount of memory (64KB). This is divided
into 16 pages of 4 bytes each. The first two pages contain the UID and BCC
bytes. Figure 8 shows an overview of the memory available in a Ultralight tag.

Page 0x02 contains the lock-bits which can lock memory blocks. After lock-
ing a memory block, any request to change the memory will be refused. On
a new tag only the first two blocks are locked, so that the UID can not be
changed. A lock bit can only be set once, clearing a lock bit is not possible. A
system could use this to lock an invalid ticket that contains arbitrary memory.
Though what should be kept in mind is that there is also a bit that can lock
the page that contain the lock-bits, after flagging this bit no changes could be
made anymore to the lock-bits. This, in stead, could be useful for an attacker to
avoid that his tag gets locked while using arbitrary memory content. Page 0x03
contains a One Time Programmable counter. The original value consists of only
zeros. All the bits in this page can be flagged ones. There is no possible way
to reset a flagged bit. This makes it a counter that can only take 32 different
values ever. A system could use this counter to keep track of the trips made
with the ticket. The memory of other pages could be reset, but this counter can
only be increased, never reset or decreased.

12

[ByteNumber | [0x00 [0x01 [0x02 | 0x03 | [Page |)
Serial Number SNO SN1 SN2 BCCO 0x00
Serial Number SN3 SN4 SN5 SN6 0x01
Internal / Lock BCC1 Internal Lock0 Lock1 0x02
OTP OTPO OTP1 OTP2 OTP3 0x03
Data Read/Write Data0 Data1 Data2 Data3 0x04
Data Read/Write Data4 Datab Data6 Data7 0x05
Data Read/Write Data8 Data9 Data10 | Data11 0x06 ﬂ:g:ﬂ’/
Data Read/Write Data12 | Data13 | Data14 | Data15 0x07 map
Data Read/Write Data16 | Data17 | Data18 | Data19 0x08
Data Read/Write Data20 | Data21 Data22 | Data23 0x09
Data Read/Write Data24 | Data25 | Data26 | Data27 Ox0A
Data Read/Write Data28 | Data29 | Data30 | Data31 0x0B
Data Read/Write Data32 | Data33 | Data34 | Data3b 0x0C
Data Read/Write Data36 | Data37 | Data38 | Data39 0x0D
Data Read/Write Data40 | Data41 Data42 | Data43 Ox0E
Data Read/Write Datad44 | Data45 | Data46 | Data47 0x0F J
Remark: Bold frame indicates user area
Fig 4. Memory organization

Figure 8: Memory of a Mifare Ultralight tag[11]

5.3.2 Mifare Classic

There is much more memory available in a Classic tag than in the Ultralight.
The Mifare Classic comes in three different versions, with memory sizes of 1KB,
4KB and the Mini(320 Bytes). The versions only differ in size, the Mini and
1KB version only consist of sectors of 64 bytes, while the 4KB version has 16
extra sectors of 256 bytes. The lower sectors consist of 4 blocks of 16 bytes.
Each of these blocks have 4 pages like the Ultralight. But in general the Classic
tag only works with blocks and sectors. Every sector has three blocks free for
storage except for the first sector which has one block reserved for the UID,
BCC and manufacturer data. In Figure 9 a schematic of the memory can be
found. In comparison to the Ultralight, NXP claims that the Mifare Classic
tag provides more security features. The communication between the tag and
the reader is encrypted. Secret keys and random numbers are used to initialize
the encryption. There are different memory sectors available which all can be
seperately protected by two keys. The secret keys are shared keys that are
known by the reader and the tag. Before any memory operation is performed
both sides prove each other that they know the same key. This is done using a
3-way challenge and response authentication protocol.

Every sector is protected by a secret key A and is often makes use of a
second secret key B. The access conditions defines the rights per key. It can for
example be used to define a read and write key. Both keys and access conditions
are stored in the last block of a sector, the sector trailer. A serious design flaw
by using this trailer has been found by a fellow student of mine, Gerhard de
Koning Gans. He is able to retrieve the plaintext of a sector without even

13

Oxff ’ Key A, Access Conditions, U, Key BA

Sector 0x27
16 blocks, 256 bytes

0xf0 ’ Data Block

' Sector trailer

0x07 | Key A, Access Conditions, U, Key B

0x06 Data Block Sector 0x01
0x05 Data Block 4 blocks, 64 bytes
0x04 Data Block /"

0x03| Key A, Access Condition's, U, Key B

0x02 Data Block Sector 0x00

0x01 Data Block 4 blocks, 64 bytes
OXOO_/

Figure 9: Memory of a Mifare Classic tag[10]

knowing the secret key of that sector[12]. This document describes in the case
studies more weaknesses we have found in the protection of the Mifare Classic.

In the last period of writing my master thesis I was member of the Team
that reversed engineered the algorithm used in the Mifare Classic. We con-
structed a very effective practical attack which allows an attacker to retrieve
the cryptograpic key within seconds from only one trace of communcated data.
This research resulted in an article Dismantling Mifare Classic[13]. This paper
describes our findings during the last part of my master thesis research.

The Ghost played a very effective role in this research. We used it to act as
a mallicious Mifare Classic tag. An original tag responds during the authenti-
cation with a random-looking nonce. With the ghost we were able to control
this none and send the same one over and over. With this feature we were able
to reveal some serious weaknesses present in the Mifare Classic algorithm and
constructed two practical attacks to exploit them.

14

6 Software

Because the hardware of the Ghost was a brand new design, a new firmware
was needed. This firmware is the core of the device and runs on a PIC micro-
controller. In this chapter, I give a technical description of the design and usage
of the firmware I have developed for the Ghost.

To configure the Ghost and process captured information, I have developed
a special application which is called RfidSpy. This application is a GUI oriented
application which runs on Windows. The features and design decisions are
explained in the second part of this chapter.

To connect the Ghost and RfidSpy I have designed a protocol which describes
the packets communicated through a RS232 connection. In the last part of this
chapter I will briefly discuss the information transferred between both parties.

6.1 Ghost firmware

The core of the Ghost is the firmware running on the microchip. It handles
all realtime events like capturing and sending bits. Developing and testing this
firmware took about 4 months. This is because it involves a lot of precise timing
issues.

6.1.1 Environment

The micro-controller that was used is a Microchip PIC18F4620. To program
the firmware on the chip I used the programming device that is called ICD2.
This device can be used by the application MPLAB IDE.

For developing and compiling the source-code I used the application Source-
Boost. This is a third party program which supplies their own compiler for PIC
micro-controllers. In the end I would have chosen another compiler to develop
the firmware. This is because the Sourceboost compiler contains some serious
flaws which produce unexpected behaviour of the controller. Luckily there was a
fix availavle for every flaw, although it dramaticly slowed down the development.

6.1.2 Design

The compiler only supported C instead of C++, that is why I was not able to
make an object oriented design for the firmware. The code is split in isolated
modules to improve readability.

e Core module

The brain of the device is implemented in the core module. Everything
is controlled and instantiated from this module. The core is focused on
receiving and sending of RFID frames. When such a sequence starts, it
often requires a quick response and parsing of following requests. When a
certain amount of time has passed without receiving any frame, the core
will do a quick scan for any incoming RS232 commands.

15

e Specifications

All the commands that are specified in the ISO standard are stored in
this section. Further more, it contains constats that define the supported
RFID frame-lengths and polling time.

e Miller decoding

The decoding is very specific and standalone procedure. To keep this im-
plementation as clean as possible it was isolated from the other modules.
The receiving has some very specific timing constraints, therefore there
was no place for any unused overhead instructions during the communi-
cation.

e Manchester encoding

The encoding is quite similar to the decoding section. This module needs
to be as optimized as possible. Parts of the encoding section are written in
assembly. This was needed to be quick enough to be in the first time-frame
which is required for the anti-collision procedure.

e RS232 communication

In this module all the communication between the computer and the Ghost
is handled. The pin-layouts and protocol specific matters are covered here.
The Ghost cannot buffer any data that is presented at the port. To solve
this, it tries to detect when information is available at the port and will
wait for a resend of the whole packet.

e Computer packets handling

The commands send by the computer are parsed in this module. When
a reaction should be communicated back, it is prepared and composed.
Calculation and verifications of the packet checksums are handled before
a packet is transmitted or processed.

e RFID frame handling

There are a lot of pre-specified frames which are used for example, in the
anti-collision. In this module they are identified and checked for correct-
ness. Most known frame types are recognized, if it can not be mapped to
a known frame, it is annotated as unknown and logged by the ghost so
the user can analyze later which frames should be manually emulated.

e Micro-controller specific features

There are some very hardware specific settings, like pin connections, in-
terrupt configurations and instructions to perform a hard reset. These
features are handled in this module.

The Ghost needs to do two main jobs. At first it needs to process RFID frames
that are captured with the antenna. The second one is to handle messages that
are send by the computer on the RS232 port. Since the micro-controller does

16

not support multi-threading, another robust solution was required. Capturing
of RFID frames is very time-critical and can not be interrupted for some RS232
job. The solution I used was a very quick polling system which tries to detect if
anything is available on the RS232, while the capturing is running most of the
time and only stops after a relative long capture time-out.

6.1.3 Usage

When the power is connected the firmware will boot automatically. There is a
reset button available which will produce the same effect as reconnecting the
power. When the Ghost boots it will sends a welcome message and the default
configuration through the RS232 connection. It does not matter if a computer
is connected since it will not wait for a acknowledgement. This way a computer
is not needed to be able to use the device.

The Ghost acts the same as a tag. This means it requires the same distance
to the reader and responds within the same time-space. The anti-collision code
in the firmware does not support the identifying algorithm for multiple tags, so
in general it requires to communicate with the reader alone. The strength of
the readers electric field is specified in the ISO, though after doing some tests
it turns out that there is much variation in this. This could mean that the
positioning distance of the Ghost should be altered a little for certain readers
to get optimal results.

6.2 RfidSpy

The host application RfidSpy which runs on the computer is written from
scratch. There was no existing application that supported all features I needed
for my research. Because the software is published under an open-source GPL
license I was able to use some existing GPL libraries.

6.2.1 Environment

Because the aim was to make a easy to use application, the usage of a program
language with good visual supports seemed to be the best choice. I had a lot
of experience with Borland Delphi, so to speed up the development I used this
language for the user interface.

Besides the user interface, the connection to the Ghost and reader was
needed. Communication to the Ghost was simply achieved by using a free
3rd party Delphi component QCCom322 that could communicate through the
RS232 port of the computer. The reader required a driver and a separate li-
brary before it could be accessed by the application. I wrote this small library
in C language since it is strongly depending on other libraries written in this
language.

2http://www.bytearts.com/downloads.html

17

6.2.2 Design

RfidSpy does not contain any complex
algorithms. In fact it is only designed
to represent the information captured
and produced by the Ghost device.
This was simply achieved by design-
ing a good userinterface. I will explain
more about the GUI in the next chap-
ter, the usage of RfidSpy. Apart from
the user-interface an important design
is the integration overview with the
other components. In Figure 10 you
will find a schematic overview of the
interactions between the components.

The reader that I used is the OpenPCD reader®. This reader supports
complete control over the transmissions between reader and tag. The OpenPCD
reader supplies an open hard- and software environment, which allows the user
to build, compile and investigate all the parts of the reader autonomously.

Ghost Device RS232 RfidSpy

RFID — Reader

Figure 10: Component interactions

6.2.3 Usage

To keep the user-interface as simple as possible all the features can be found
categorized in one main form which is presented in Figure 11. To be able to use
the Ghost, a connection should be made. This can be done using the connect
button in the upper left corner. It will let you choose from the available COM
(RS232) ports on the computer.

When a connection is made a operating mode can be chosen. The modes
provide different ways of operation. For each mode a set of options is available.

The reader can be used seperate from the Ghost. When the start button
is pressed a connection to the OpenPCD will be requested. After a successful
connection, communication with a tag can be requested. The anti-collision is
executed and the UID is retrieved from an available tag.

6.3 Protocol between RfidSpy and Ghost

For the communication between RfidSpy and the Ghost a custom protocol is
designed. Below I will show the formal representation of this protocol.

packet = { Header, PacketContent }

Header = { StartByte, PacketContentCRC }

StartByte 1 Byte => OxBA
PacketContentCRC = 1 Byte => 0x77

3http://www.openpcd.org

18

@ Rfid Spy (=1

Ghost Packet Information

Ghost Ghost Packets

o TR wo|an (oo | command [content | state |

& Emulate
leer <« 6 2 U Ghost UID succesfully updated oK

" Sriffer e

€ Man in the Middi

" Mifare Ultralight | Save Packebs
L Reader Framss
04 F2 42 B1 EC 02

- 2 uD Changing UID to; 04 F2 42 B1 EC 02 80 ACK
<= 4 1 Options Ghost configuration successfLily updated oK
- 1 Options Refrieving current Ghost configuration ACK

Emulate
=

&
Emulate Frame

~Reader — Reader Packets Ghost Packet Infarmation

| sop | ssereess | [10 [Type [content lcre

Tag — - < UD 04 F2 42 B1 EC 02 80
Connect Re-Connect
Discannect

Tag Commurnication

Transmit Bytes To Tag | ¥ Add CRC

Process information
1 - Succesfully connected 0 the reader [OpenPCD RFID Reader]
2 - Reader succesfully connected o tag

Figure 11: RfidSpy screenshot

PacketContent = { GhostId, ComputerId, Command, CommandInfo }

Command = { Reset | Transfer | Emulate | Ok | Error | Info |
Acknowledge | ProgramUid | ProgramATS | GetOptions |
SetOptions | GetMifareUl | SetMifareUl | GetReaderFrames}
CommandInfo = { TransferFrame | EmulateFrame | GhostOptions |
Message | ProgramUidFrame | MifareULMemory }

TransferFrame = { Length, Bytes }

EmulateFrame = { LengthIn, BytesIn, LengthOut, BytesOut }
GhostOptions { GhostMode, bIgnoreREQA, bUseBuffer }

Message = { String }

ProgramUIDFrame = { uiUIDLength, UidBytes }

MifareULMemory = { pbtMifareULBytes, pbtCRCBytes, pbtOriginalBytes }

19

Since the Ghost device technically can not support buffering of incoming
RS232 messages, it needed to be compensated by the RfidSpy application. Every
time a command is send to the ghost it will wait for a confirmation. During
this time it will keep re-sending the command until the Ghost replies with an
acknowledgement. This undesirable way of communicating is only needed when
sending to the Ghost. The RfidSpy does supports buffering of the RS232 port,
so the Ghost does not have to wait for any confirmation.

Every packet consists of header, command and commandinfo. There are a
few general commands used to configure the ghost. ProgramUid and Progra-
mATS to set the anti-collision information and (Get/Set)Options to configure
options like ignoring similar sequential frames.

Reset, Ok and Acknowledge are used to control the state of the Ghost. The
commands Error and Info are implemented to support extensive logging feature.
Detected problems can easily reported back to the computer. This is very useful
during the development of a embedded device.

7 Attacks

To support different research methods I have chosen to let the Ghost work in four
different modes. Each mode has its own advantages for certain scenarios. This
chapter describes all four different modes and their support for investigating
security features.

7.1 Sniffing

The first configuration the Ghost supports is the sniffing method. This mode can
be used to eavesdrop frames sent by a reader. The Ghost will not respond to any
message, this way it will not interfere with transactions that are communicated
between the reader and a tag. Since the Ghost can not receive the manchester
signal from an different tag it is only capable to understand the information send
by the reader. At first this looks like a very important limitation. But if the
eavesdropped frames captured from the reader are resend by our own reader, the
tag will give us the answers we missed earlier. This of course is only possible if
there was not some kind of session set up between the original reader and tag. If
there was a cryptographic challenge during the communication, a replay attack
of the frames could not be performed on the tag. For that reason a man in the
middle attack is more appropiated, which will be discussed in chapter 7.3. The
field of the reader is not very large, so a position near the reader must be found
where both the tag and the Ghost are in the field. Experiments show that the
Ghost must be between the reader and the tag to give the most reliable trace.
The communication between a 3rd party reader and tag can be very quick.
A request and response could be send within 100 milliseconds. This is to fast to
eavesdrop and send through a RS232 connection at the same time. To overcome
this problem I have implemented a buffer which can store about 40 frames. After

20

the transaction has taken place, the buffer can be requested from RfidSpy and
it will transfer all the frames at once.

To detect a tag the reader keeps sending a welcome (REQA) message through
its field at a certain time interval. This interval is depends on the implemen-
tation of the vendor. For embedded standalone readers this interval is rather
small, like only several milliseconds. In order to prevent to gathering a complete
buffer with only REQA frames, there is a filter which will leave out frames that
are similar to the last frame. Some information is lost here, though this could
simply be overcome by just counting the repeats of the last frame and store
this in the packet that is transferred to the computer. This feature was not
necessary for my research, so I left it out of my developing scope.

7.2 Emulation

In emulator mode the ghost is able to clone a simple tag. The user can supply
an UID which is used in the anti-collision. In addition some incoming and
outgoing bytes can be defined, so the Ghost knows how to react on certain
frames. This could be useful when a reader only wants to identify the tag and
request one simple non-encrypted answer. After the Ghost is configured, it can
be disconnected from the computer and be used as a standalone device. This
mode is very useful for a replay attack. When the communication between the
original reader and tag is known, it can be cloned by the Ghost.

7.3 Man in the middle

This is the most advanced mode of the Ghost. It needs the original tag and
reader, the OpenPCD reader and the Ghost connected to a computer. The
Ghost communicates with the original reader and transmits the requests to the
computer. The computer processes the request through the OpenPCD to the
original tag, which answers back to the computer. The computer transmits this
answer back to the Ghost, which sends it to the original reader. A schematic
overview can be found in Picturel?2.

Original Tag

’

Ghost Device RS232 Computer f— OpenPCD

’

Original Reader

Figure 12: Man in the Middle mode

21

From the communication both original sides could not detect any of this man
in the middle that is set up between them. They only big problem that occurs is
the timing issue. There is a RFID communication, computer processing, RS232
transmission and a Ghost processing more than in the original environment.
This differs a lot the original timing constraints. It is vendor specific to define
any constraints. So it needs to be investigated if certain implementations can
detect a attack like this.

7.4 Mifare Ultralight

This is a very specific mode which I needed for a particular case study. It can
completely simulate a Mifare Ultralight tag. An Ultralight tag consists of 64
memory bytes, which are partly writable. The Ghost will simulate the Mifare
Ultralight tag including its memory read and write methods. It is possible
to view the memory of the Ghost at any time with the help of the RfidSpy
application. When read or write actions are performed, a trace of commands
is being stored within the Ghost buffer. The RfidSpy can read this trace quite
similar the way it is done in sniffer mode. Since the Mifare Ultralight does not
support any encrypted transaction, it was easy to simulate. The memory that
is written though could be encrypted by the used application. This is purely
depending on the particular implementation design of the application.

8 Case studies

This chapter describes several case studies performed in the field. For all re-
searches the Ghost was used to research the communication between reader and
tag. For each case study a low level security analysis is performed. The vulner-
able aspects will be described including their risk of happening. In addition to
this, suggestions and counter-measures are presented to prevent attacks on the
weaknesses of these systems.

8.1 University parking

The parking system of the Radboud University is the first case study I have
performed. Any employee of the University is able to park if they subscribed for
this service. This costs the employee some small payment each month. Before
the employee enters the parking lot he has to pass a barrier. This barrier will
open when a valid employee-card is positioned in front of the integrated RFID
reader. The employee-card is actually a Mifare Classic tag and is also used to
grand access to the building. The aim was to capture and fake the transaction
performed between the gateway and the card.

First I have analyzed the communication between the card and the gateway.
I used for this the sniffer mode of the Ghost. In this mode I was able to see all
the requests that were send by the gateway when a valid tag was in front. This
complete trace is shown below.

22

write len=1, data= 26 => Welcome (REQA)

read: len=2 val= 04 00: OK => Respond (ATQA)

write len=2, data= 93 20 => Select cascade 1 (SEL)
read: len=5 val= 44 45 fa d7 2c: 0K => UID, BCC

write len=7, data= 93 70 44 45 fa d7 2c => Select available tag (SEL)
read: len=1 val= 08: OK => Select Acknowledge (SAK)
write len=2, data= f7 49 => x Unknown Command *

read: len=1 val= 04: 0K => x Unknown Answer *

write len=2, data= 50 00 => Halt, deactivate tag

It was interesting to see that a trace from a valid tag did not differ from a
trace made with an unknown tag. This means the gateway terminal is actually
very stupid. It will first perform the complete anti-collision protocol, perform
a command and dispatch the tag again. After this it will check its UID against
a list of valid entrance codes. When this validation succeeds the gate will open
so the employee can enter the parking lot.

The entrance and exit gateway work exactly the same way. Important
though is that the system keeps track of the position of the user. When a
employee has entered the parking lot, it first needs to check out before entering
will work again. This is probably used to avoid simple fraud. No employee will
be able to pass their tag to someone else and both park together in the parking
lot.

The tags have a Unique Identifier, otherwise the whole system would be
useless. Since all manufacturers are involved in this matter, it will be very
unlikely a second tag can be found with a similar UID. Manufacturers offer
their customers the possibility to buy a collection of tags which all have UIDs
within a small predefined range. This makes the hardware perform faster during
the verifying methods. In addition to this administration of given out UIDs will
be much easier for the manufacturer. While this at first looks harmless, further
examination shows that it is actually extremely vulnerable to a domain-replay
attack.

If we clone a tag with the ghost and use one UID, it is possible to enter the
gateway without trouble. Though the original owner of this tag will not be able
to enter the parking lot anymore while we are still in there. But because we know
that the UIDs of the tags given by our university are within a special range, we
can let the Ghost generate random UIDs that are within this range. Not every
employee has a parking subscription, but since a transaction is completed in
less than 50ms, we can try 20 different UIDs per second. To optimize this, we
can filter out the valid ones and add them to our own entrance list.

We can conclude from these findings that the parking system has almost no
security at all. It only depends on the uniqueness of the tags. If a manufacturer
suddenly starts producing cheap RFID tags with custom UID numbers on de-
mand, the security of systems like this, simply depending on the UID will fail
completely.

23

8.2 Public transport system

This chapter describes the test I have performed on payment for the public
transport system in the Netherlands which is called the OV-chipkaart[14]. Last
year two students from the University of Amsterdam contacted me for advice
during their research on the disposable OV-chipkaart[15]. Together we discussed
cases that could be exploited and tried to get the Ghost operational for their
tests. At that time the Ghost was not stable enough to be used so they tried
to find functional problems in the system. In this they succeded and published
together with Translink Systems a solution to the software bug. Hardware
analysis was still not performed, until the Ghost was ready to be used. This is
where my research continues theirs.

At the moment it is still in a test-phase and only fully available in the city
of Rotterdam. To do my tests I have travelled to this city and bought some
tickets from the ticket machine. There were two different tags available at the
ticket machine. The first one was a subscription card, which is used to store
an amount of travel money. You can recharge the card at any ticket machine.
A certain amount of money will be subtracted after you have traveled from a
check-in to a check-out point by your destination. After recharging this card
could in theory be reused unlimited times. The second type of tickets is very
different from the first. The later one is called a disposable ticket and is available
as two-trip ticket or a few-days traveling ticket. As can be expected, the first
ticket is a Mifare Classic tag, while the second disposable ticket is a Mifare
Ultralight tags. The tests that are performed on the dutch OV-chipkaart but
the same princeples could be applied for all public transport systems world-wide
which are using the same techniques. Figure 13 shows an overview of different
countries and their used RFID tags.

When a traveler wants to enter the station he
needs to check-in. This means tickets needs to be
verified and updated by the entrance gate. The
update contains the location and time of the check-
in. With this information stored on the ticket, the
traveler will be able to retrieve his travel history.

Figure 14 shows an entrance gate which a trav-
eler must pass. The traveler takes his ticket and
holds it in front of the round white and pink sign
on top of the gateway. When the ticket is verified, a
green light appears and the entrance gate will open
so that the traveler can pass.

After a check-in, a check-out at the same station
is possible unlimited times. This could be useful) .
when the traveler forgot something and needs to retugfgi%r?h]e4ét9¥_g&épog%ﬁee
gates. Though it is not possible to check-in two times with the same ticket.
Traveling with one tag and pay for your friends is therefore not possible.

During my tests it pointed out that the field of the reader in the gateways
are very strong. This is a good thing for performance. Travelers do not need

24

Sites Type A
Card Ticket Token
Bangkok Blue Line Mifare 1
Delhi metro DESFire Ultralight
Nanjing metro DESFire Ultralight
Mifare 1
Singapore Circle Line
Taipei Mifare 1 Ultralight
Paris
Strasbourg Mifare 1
Granada - Jaen
The Netherlands Mifare 4k | Ultralight
Oslo DESFire | Ultralight
Turin
Denmark Mifare 4k

Figure 13: Worldwide usage of RFID tags in public transport

to take out their ticket out of their bags or wallets, they only have to wave the
bag in front of the reader to gain access to the station. The side-effect of this is
that it is possible to catch the reader signal from a distance, which allows the
eavesdropper to recover the transmitted information. The information leakage
depends on the implementation of the OV-Chip, which we will investigate later
in this chapter.

8.2.1 Disposable ticket

This chapter describes the OV-Chipkaart disposable tickets. This is the proce-
dure of a traveler using the disposable ticket:

1 Buy a deactivated ticket at a ticket machine
2 Activate the ticket by first use

3 Check-in

4 Check-out

5 When trips available go to 3 for next trip

6 Throw away the used ticket

First an inspection of the original deactivated ticket bought at the central
station. The memory of Mifare Ultralight tags is accessible by any reader. This
made it rather easy to dump the total content of the memory. Figure 15 shows
the content of a disposable traveling ticket in original deactivated state.

The UID of this tag is 7 bytes long and is present in the yellow marked
hexadecimal bytes. The values 07 and DE take no part in the UID, these are

25

04 11 SA 07 Bl EC 02 81 DE 48 00 FO 00 00 00 00
FF FF FF FF 00 00 QO OO0 00 0O 00 00 00 00 OO 0O
C0 00 10 05 07 CO BO 50 1F 2% 72 9C 85 D4 F4 73
E0 22 ED D5 00 FA EZ F7 FB &6 81 68 4F 2% E8 E3

Figure 15: Content of original disposable ticket

the BCC bytes which are used in the response of the anti-collision cascade levels.
The second line starts with 4 times FF, which indicates an empty transaction
field. This line is used to store the next transaction. The third line which is
marked grey contains transaction info. The ticket is not yet used on a gateway,
so this is the first transaction stored by the ticket machine, it contains the date,
time and place of selling. Figure 16 describes the content of the ticket after a
check in is performed.

04 11 %A 07 Bl EC 02 81 DE 48 00 F0O EO FD EF FFE
C0 00 20 05 27 CO B5 80 OF &D 1E 7A 02 50 4F E6
C0 00 10 05 07 CO EO 50 1F 25 72 SC 85 D4 F4d 73
E0 ZZ ED D5 00 FA E2 F7 FB 66 81 68 4F 23 EB E3

Figure 16: Content of disposable ticket after check-in

The first transaction is still present in the memory. The new travel trans-
action was stored in the second green line. The One Time Programmable, an-
notated by the blue color is dramatically changed in comparison to the original
content. It appears that at an activation of the ticket the counter is initialized.
The memory content of the tag after checking-out contained these bytes. After
checking out the content of the disposable ticket changed to the state shown in
Figure 17.

04 11 5A 07 B1 EC 0Z 81 DE 48 00 FO EO ED EF FE
C0 00 20 05 27 CO B5 80 OF 8D 1E 7A 02 50 4F E&
Bg 00 30 05 47 C0O B5 DO 77 CO 1le 1C 28 92 &F FF
E0 22 ED D5 00 FA EZ F7 FB &6 81 68 4F 2% E8 E3

Figure 17: Content of disposable ticket after check-out

The check-out is written on line three. At this point a complete transac-
tion, namely a check-in and check-out is stored in the tag. The One Time
Programmable memory is not changed. The second green line containing the
check-in will be available until a next check-in is performed. Due the limitation
of storage only two transactions can be derived from the memory content of a
disposable ticket.

Every transaction is written in line two or three. It depends on which line was
used for the last transaction, the transaction before the last transaction will be
overwritten. This means that when a transfer took place, from one transport
system to another, the original check-in line will get lost. A more detailed
explanation of the transactions is presented in Table 1 which is extracted from
the paper published earlier this year about the disposable OV-Chip tag[15].

26

Bits Function Comments
0-4 Unknown Values: 10101, 10110, 10111, 11000, 11001.
Appears to follow a regular pattern.
5-19 | Transaction Counter Regular counter.
20-31 Location Values: 010 = Amsterdam, 101 = Rotterdam.
32-34 Transaction Type Values: 000 = Purchase, 001 = Check-in,
010 = Check-out, 110 = Transfer (Overstap).

35-48 Date Number of days since January 1, 1997.
49-59 Time Number of minutes since the start of the day.
60-63 Unknown This value is always 0. Probably unused.

Table 1: Transaction of a disposable OV-chipkaart[15]

An interesting feature of the Ghost is that it can store the commands re-
quested by the gateway in a buffer. After checking in with the ticket we can
analyze the new memory content stored on the ticket. Secondly we can view the
complete transaction. This transaction trace contains the commands send by
the original disposable OV-Chip Tag and the gateway during a valid check-in
was the following.

| Length Command CRC Description

1 4 30 00 02 A8 | Read bytes 0-15
2 4 30 04 26 EE | Read bytes 16-31
3 4 30 08 4A 24 | Read bytes 32-47
4 4 30 0OC 6E 62 | Read bytes 48-63
) 8 A2 04 00 00 00 00 | 37 92 | Write bytes 16-19
6 8 A2 05 27 CO B5 80 | 45 8B | Write bytes 20-23
7 8 A2 06 OF 8D 1E 7A | 89 16 | Write bytes 24-27
8 8 A2 07 02 50 4F E6 | F8 72 | Write bytes 28-31
9 8 A2 04 CO 00 20 05 | 70 DD | Write bytes 16-19
10 8 A2 03 60 FD FF FF | FC B8 | Write bytes 12-15
11 8 A2 03 EO FD FF FF | 92 95 | Write bytes 12-15

The 30 indicates a read and the A2 a write command.

30 XX = Reads from page XX until XX+3
A2 XX ZZ 77 77 7Z

Writes Z to memory page XX

The anti-collision is excluded from this trace because it adds no valuable
information. This sequence was similar to the one described in Chapter 5.1.
The read command requests 16 bytes at once, while the write command can
only write 4 bytes at the time. The trace shows that commands 1 to 4 read
out the complete 64KB of memory from the tag. Then the gateway processes
the information, validates it and updates parts of the memory. An interesting
point is that the gateway starts with writing only zeros to memory page 0x04
as you can see at command 5. Then it updates memory pages 0x05 until 0x07
and completes the update with a write on page 4 again at command 9. This

27

indicates support for some kind of verifying mechanism that ensures an update
is completed and not interrupted in any way. The commands 10 and 11 will
write to the One Time Programmable counter which is located in memory page
0x03. The question that raises here is, why does the system tries to write to
the same memory page 2 times. After some research it occurred that only the
first time a tag is used it will receive the command to write ”60...” to the page.
After this, all transactions will only write "E0...” to the page. The binairy
representation of 0x60 is 01100000 while 0xEOQ stands for 1110000. This means
only one bit more is triggered. This is strange since it is writing in the one time
programming memory. So far, I have found no real explanation for this strange
behaviour of the counter.

The check-out is quite similar. Though it will write in a different memory
space. Next there is a trace of a valid check-out.

| Length Command CRC Description

1 4 30 00 02 A8 | Read bytes 0-15
2 4 30 04 26 EE | Read bytes 16-31
3 4 30 08 4A 24 | Read bytes 32-47
4 4 30 0OC 6E 62 | Read bytes 48-63
5 8 A2 08 00 00 00 00 | 07 E5 | Write bytes 32-35
6 8 A2 09 47 CO B8 FO | 6E A6 | Write bytes 36-39
7 8 A2 OA 70 70 EE 37 | A7 1F | Write bytes 40-43
8 8 A2 OB EO B3 AD CB | 3F 4E | Write bytes 44-47
9 8 A2 08 B8 00 30 05 | 4C 80 | Write bytes 32-25

Interesting is that during a check-out nothing is written to page 0x03. This
means that the One Time Programmable memory is only invoked at the start
of the trip. A second thing that is good to notice is the encrypted part of this
memory written in Command 7 and 8 are probably very weakly protected. It
could be accidental that the signature looks like ”70 70 EE 37 EO B3 AD CB”.
But in my opinion this looks like there is a strong weakness in the hashing
algorithm. The bytes in this sequence are quite similar and does not look
random at all, this suggests that at least some crypto analysis would be very
likely to reveal relations.

During the tests with the OV-Chip I was able to reconstruct a valid ticket
that could be reused an unlimited number of times. I demonstrated this to the
public in a news item on 14 January 2008[16]. To explain the details of this
attack to the public there was a reference document released for newspapers and
their journalists. This document is distributed by the official web site of the
Radboud University. This chapter describes the applied attack in more details
compared to the paper released in January.

The aim of the attack was to simulate free traveling. Please keep in mind
that as a student you own a free traveling pass OV-Studentenkaart[17], so I was
not breaking any law in that sense.

The 7 bytes UID of the Mifare Ultralight tag should be part of the key during
the encryption of the content. This is a useful way to protect the data against

28

duplicates. When you try to copy the content of one tag to another, the system
can not decrypt the content anymore since the other tag has a different UID.
All the current available RFID chips present a unique identifier. This means
that until a manufacturer start to ship programmable UID tags there is no real
danger in cloning one tag to another. But we should not forget that this setup
is quite comparable to the network MAC-Address scene. The IEEE proposed
usage of the Extended Unique Identifier[19] decades ago. But with the new
EEPROM chips used in the network interfaces, changing of MAC-Adresses is
as easy as changing an IP address. This could mean that we will probably see a
similar thing happen to the unique identifiers in the near future. As described
earlier the Ghost can reproduce any UID that is needed. To clone a public
transport ticked this is one of the main requirements.

The encryption methods to protect the content written on the card could
be perfect, but still would be vulnerable against an replay attack. It is good
to keep in mind that a replay attack is known in the security world for many
years now. Typically what is done during an replay attack is that someone
eavesdrops the information that is presented to the listening party and replays
the same information in a later session. The eavesdropper does not need any
knowledge about the plaintext. This works unless there are taken some counter
measures against it. A counter measure is to use of sequence numbers which are
registered on both sides, sender and receiver. When a earlier session is replayed,
the receiver detects that this sequence number is already used during an earlier
session and revokes the request. The problem with keeping track of a sequence
number means that the receiving party should be up to date. In terms of a
public transport system with a lot of gates it means that the system should
be online. Otherwise one gate does not know the sequence numbers of a gate
next to it. The OV-Chipkaart currently does not use an online system. It relies
purely on the validity of the presented information of a tag.

Since the transaction and transferred information is known an attack could
be performed. The content of a freshly bought disposable ticket is retrieved by
a ordinary reader, in this attack the Omnikey Contactless Reader* was used.
The original 64 bytes of memory are copied into the Ghost. All the commands
that are defined in the Mifare Ultralight Specification[11] are implemented by
the Ghost. A read and write operation is processed in the ghost exactly the
same as an original tag would. After completing the operations the ghost starts
to investigate the changes and resets the internal memory back to the original
state. This means that even after a check-in we can directly present an ”original”
ticket again. In a normal case you would not be able to check-in with multiple
people using only one ticket. In this case though you could enter the sub-way
with a very large group, just by passing the ghost to the person behind you
in line. When the last person has checked-in to the system the ghost will save
the modified memory state. This state is needed to check out again. You can
not check-out with an original ticket without having a valid check-in stored into
it.The checking out with the group is performed the same way as the check-in,

4http://omnikey.aaitg.com

29

the ghost will provide every malicious traveler a valid check-out ticket.

The tickets that are available for sale are 1,2 trip tickets and 1,2,3 days
traveling. At the time of buying the ticket is not ”activated” yet. Activation
takes place when a ticket is linked to the first day of usage. It would be possible
to buy tickets in advance which get activated by first use. An activated ticket
gets disabled after completing the trips payed for, a inactivated ticket though,
stays valid undefinitly. This means that the original inactivated ticket which is
stored in the memory of the Ghost will never expire. It will get activated every
time a check-in is performed, but it will reset immediately to the inactivated
state again, when the next check-in is required.

What is good to keep in mind is that we still have our original ticket in
our pocket. This ticket is never used for a check-in. When a employee of
the transport company wants to check the validity of the ticket, the memory
contents of the check-in available in the Ghost can be copied back to the ticket.
This means the ticket contains completely valid data. In general it means that
a malicious traveler only has to buy a new ticket when the original ticket is
compromised.

Interesting to know is that the lock-bits are worthless when it comes to
cloning tickets. The Ultralight tag prevents memory changes to be made when
certain lock-bits are flagged. Using the Ghost device this prevention is controlled
by the Ghost itself. This integrity feature is completely ignored, for an attacker
it is far more useful to change memory even after it gets locked. The Ghost
though should respond to a gate as the tag would have done. It shows that the
memory is locked and can not be changed anymore, while in the background it
manipulates the memory in such a way that earlier states can be back loaded
into the memory.

The One Time Programmable counter is vulnerable in the same way as the
lock-bits. After a certain state is reached, for example that all the counter
bits are flagged, no increment could be enforced anymore. Then again, the
Ghost controls this memory completely, which enables it to completely reset
the counter.

8.2.2 Subscription card

Mifare Classic tags are used for the subscription cards. The subscription card
comes in two types, the anonymous and the personal form. The anonymous one
is like a prepaid card, it is chargeable with a certain amount of money which
can be used for traveling. The tag is called anonymous because it should have
no direct link to a person. In practice this is only true if you always top-up your
card with cash money. When a traveler ever recharges his anonymous card via
a bank transaction the card can be linked to a name.

Secondly, the UID of Mifare Classic tags are static and more important,
unique. For instance, the passport contains a chip that generates a random
UID every time it is challenged by a reader. This would not allow any 3rd party
to track people movements. Though realistic is to say that next to the passport a
person always would carry his own subscriber or anonymous OV-Chipkaart. The

30

counter measure in the passport against tracking becomes completely useless if
other RFID tags reveal the information the passport is trying to hide.

Mifare Classic tags were chosen because it was field proven technology at the
time of selecting the technical infrastructure in 2001. The technique was stated
to be field proven because of the use in a lot of big cities as replacement for obso-
lete paper traveling tickets. The technique never was certified complient to the
Common Criteria[20] for Information Technology Security Evaluation. There is
much more memory available in the subscription card. They use Mifare Classic
4K tags to store the information. In this memory a history of previous trips is
stored. At any recharge point the traveler is able to check the amount that is
available and recent traveled trips. In the Dutch system they use the 4KB ver-
sion instead of the more used 1KB version because all the transport companies
involved claimed part of the storage space for their own gathered information.
The result is that a check-in transaction generates quite some overhead. There
is 15 times as much communication compared to a check-in transaction with the
disposable tag. The communication is normally encrypted using the CRYPTO1
algorithm, but with help of our key-retrieval and decryption tools[21] the plain-
text transaction could be revealed. This is the decrypted trace of a check-in
transaction.

1| RD | ok | AUTH | 60 FF 8D 74
2 | TAG | - | Nt | BA 6A 16 8E
3| RD | - | Nr+ Nt’> | C2 69 12 BC 57 85 82 60
4 | TAG | - | Nt | B6 87 90 32
5 | RD | ok | READ | 30 FB 5E E1
6 | TAG | ok | DATABLOCK | 9B 00 03 20 01 23 45 60 12 34 56 78 9A BO 12 34 E1 E2
7 | RD | ok | READ | 30 FC E1 95
8 | TAG | ok | DATABLOCK | 56 78 9A B2 34 56 78 9A OC 12 34 56 78 9A B8 60 6A 1E
9 | RD | ok | READ | 30 FD 68 84
10 | TAG | ok | DATABLOCK | 9D 00 03 60 01 23 45 60 12 34 56 78 9A BO 12 34 E3 BD
11 | RD | ok | READ | 30 FE F3 B6
12 | TAG | ok | DATABLOCK | 56 78 9A B1 23 45 67 89 A0 12 34 56 78 9A B8 00 40 7B
13 | RD | ok | AUTH | 60 5F 87 D1
14 | TAG | - | Nt | D3 5C 9B 3A
156 | RD | - | Nr + Nt’ | 8B C9 41 D8 93 CD 29 C9
16 | TAG | - | Ng" | OF BC 6D 09
17 | RD | ok | READ | 30 5C EB 30
18 | TAG | ok | DATABLOCK | OE 02 94 00 00 00 22 8A C1 4B CO 00 00 00 00 00 03 5B
19 | RD | ok | READ | 30 5D 62 21
20 | TAG | ok | DATABLOCK | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 37 49
21 | RD | ok | READ | 30 5E F9 13
22 | TAG | ok | DATABLOCK | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 37 49
102 | TAG | - | ACK | 0A
103 | RD | ok | DATABLOCK | 20 00 80 00 00 00 80 00 DO 04 OC A0 00 00 00 00 33 67
104 | TAG | - | ACK | 0A
105 | RD | ok | WRITE | A0 FC BC 8C
106 | TAG | - | ACK | 0A
107 | RD | ok | DATABLOCK | 56 78 9A BO 12 34 56 78 9C 12 34 56 78 9A B8 60 43 4E
108 | TAG | - | ACK | 0A
109 | RD | ok | WRITE | AO FB 03 F8
110 | TAG | - | ACK | 0A
111 | RD | ok | DATABLOCK | 9B 00 03 AO 01 23 45 60 12 34 56 78 9A BO 12 34 43 24
112 | TAG | - | ACK | 0A
113 | RD | ok | HALT | 60 00 57 CD

The exact meaning of the transmitted bytes is unknown to us at the moment
of writing this thesis. The company that implements the OV-Chipkaart in the

31

netherelands, Trans Link Systems (TLS)?, only shares this information under a
No Disclosure Agreement (NDA). It is clear that at least parts of this trace are
not stored encrypted.

For instance, on line 6 the block with the index 0xFB is read containing the
following values

9B 00 03 20 01 23 45 60 12 34 56 78 9A BO 12 34
Line 111 shows a new value that is written to the same block
9B 00 03 AO 01 23 45 60 12 34 56 78 9A BO 12 34

The new value has only one bit changed (20=00100000) => (A0=10100000).
This could be some kind of transaction number. The information stored in
these blocks look very fimilar. Obviously they wanted to avoid to much zeros in
memory, but it is hard to believe that the hexidecimal counter in the last part
of the block actually means something useful. A complete check-out trace can
be found in Appendix A. It was automaticly decrypted with a tool created by
Ruben Muijrers[18].

8.3 Entrance access

The access control of our university building is protected by RFID tags that
contain chips with the Mifare Classic technology. These tags are presented
by the manufacturer as a secure solution for several applications. During my
research of these RFID chips it came clear that the protections are not as strong
as the manufacturer claims it to be.

The access control of our building uses the same tags as the university park-
ing, the difference though is that, to gain access to the building the gate does
not verifies the UID. It requests a identification number stored in memory sector
0x30 on the tag. This identification is checked against an online database, when
the ID is authorized the systems grants access.

This implicates that if the sector key is known a employees access tag can
be challenged with a regular reader to retrieve its identification number. This
number can be stored in any Mifare Classic tag. A demonstration[22] shows
that a blank manufacturer tag can be used for this. The key that is retrieved is
programmed into the manufacturer tag together with the retrieved employees
identification. This is a very high security risk since you can mass-produce
fake access tags very quickly with low costs. While checking the UID will not
solve any weaknesses in the Mifare Classic algorithm, it makes it harder to gain
access to this system. For example, the UID could be used to generate a key
per tag. This is called diversified keys. Here is an example of a process that
uses diversified keys.

Shttp://www.translink.nl

32

Reader Tag

Get UID
Send UID
Encrypt(UID,sector#) with master key
Authenticate for sector# using generated key
Verify key

In this example the master key is only known by the firmware chip in the
reader. To be sure the firmware is not recovered or tampered it should be
implemented in a smartcard. Using a smartcard for this in a RFID reader is
called a Secure Accsess Module (SAM).

Every tag has its own set of keys which are derived from this master key.
The key needs to be transported to the Mifare Classic chip from NXP in the
reader. This chip does all the encrypted communication by itself. It has its own
connection to the antenna of the reader and uses this to communicate directly
to a Mifare Classic tag which is shown in Figure 18. There is a major problem
with this. The communication between the firmware and the chip from NXP
is not protected in any way. An attacker would be able to tap the pin where
key transmitted and eavesdrop the key without need of any special knowledge
about the system. This way one key for one specific card is recovered, while
the master key will still be secret. Last november NXP presented a new chip
to bring a solution to this problem. This chip is compatible with the formerly
used Mifare Classic chip but also implements algorithms for diversifying keys.
This way it would be possible to load the master key into this smartcard and let
it calculate internally the diversified key for the presented tag. This smartcard
should be fully compatible with current SAM modules available in the market.

Tag

—

Reader

Antenn

Firmware

vt

Mifare Classic chip

A

4

IR

Eavesdrop KEY
Figure 18: Eavesdrop diversified key

To fake the UID a device like the Ghost is needed. This device needs to
implement the Mifare Classic algorithm to successfully communicate with the

33

reader. Gerhard de Koning Gans implemented these features on the Proxmark
device[12]. In a public demonstration we have shown the easiness of eavesdrop-
ping a tag, retrieving the key, decrypting the communicated information and
impersonating someone to gain unauthorized access.

9 Conclusions

Security is a real issue when wireless techniques like RFID are globally used.
At several crowded places, tags can be cloned without the need of touching any
victim. Impersonalisation can be reached within seconds. Digital money stored
in a tag can be multiplied without any loss of integrity like signatures.

The general conclusion that can be drawn from this reseach is that most
RFID tags that are in use do not provide any real security. The Mifare Ultralight
tag does not provide any communication security at all, while the more trusted
bigger brother the Mifare Classic is proven to be almost just as weak. The
information that is stored in the tags can be retrieved very easyly. Furthermore
it can be used to create a copy which is indistictable for the reader. This is a
major security issue because it allows a mallicious user to eavesdrop and copy
access keys from the distance.

There are new high-end alternatives available[25]. These tags provide en-
cryption using widely used and proven algorithms like DES, 3DES and AES.
But even when the tags themselfs provide enough security features, the appli-
cations using this techniques should be careful in designing the protocol. For
example, recent studies[26][27] at our department show weaknesses found in the
new Dutch passport using the newest technologies.

The public should be aware of these security threats. The trust that is put
into RFID tags is often much more thant it deserves. And last but not least,
encryption algorithms should not base their security on secrecy of the system. In
general, it is far better to use well-established and well-reviewed cryptographic
primitives and protocols than proprietary ones. As was already formulated by
Auguste Kerckhoffs in 1883, and what is now known as Kerckhoffs Principle,
the security of a cryptographic system should not depend on the secrecy of the
system itself, but only on the secrecy of the key[23]. So many times it is proven
that details of the system will eventually become public; the previous obscurity
then only leads to a less well-vetted system that is prone to mistakes. Examples
of other systems which turned out to be insecure because of applying security by
obscurity are Bluetooth[28], DVD CCS protection[29], Mobile GSM system[30],
Wireless Internet, Wired Equivalent Privacy (WEP)[31] and many more.

References

[1] ISO/IEC 14443. Identification cards - Contactless integrated circuit(s) cards
- Prozimity cards, 2001.

34

[2] ISO/IEC 11785. Radio-frequency identification of animals. Technical con-
cept, 1997.

[3] ISO/IEC 15693. Identification cards - Contactless integrated circuit(s) cards
- Vicinity Integrated Circuit(s) Card, 2001.

[4] Escorics 13th European Symposium on Research in Computer Security
Malaga, Spain, 2008.

[5] Timo Kasper, Dario Carluccio, Christof Paar. An Embedded System for
Practical Security Analysis of Contactless Smartcards, 2003.

[6] I. Kirschenbaum and A. Wool. How to build a low-cost, extended-range
RFIDskimmer Cryptology ePrint Archive, Report 2006/054, 2006.

[7] Craig Ross and Ricardo Goto. Prozimity Security System RFIDskimmer,
2006.

[8] Thomas S. Heydt-Benjamin , Daniel V. Bailey , Kevin Fu , Ari Juels ,
and Tom OHare. Vulnerabilities in First-Generation RFID-enabled Credit
Cards, Eleventh International Conference on Financial Cryptography and
Data Security Scarborough, Tobago, 2007.

[9] Gerhard P. Hancke. Practical Attacks on Prozimity Iden-
tification Systems (Short Paper),SP ’06: Proceedings of the
2006 IEEE Symposium on Security and Privacy, pages 328-333
http://www.cl.cam.ac.uk/ gh275/SPPractical.pdf, 2006.

[10] Philips Semiconductors. Mifare Standard 4 kByte Card IC - MF1 IC S70
- Functional Specification - Rev. 3.1, 2002.

[11] Philips Semiconductors. Mifare Ultralight - MF0 IC Ul - Contactless
Single-trip Ticket IC - Functional Specification - Rev. 3.0, 2003.

[12] G. de Koning Gans, J.-H. Hoepman, and F. D. Garcia. A practical attack
on the MIFARE classic, 2008.

[13] Flavio D. Garcia, Gerhard de Koning Gans, Ruben Muijrers, Peter van
Rossum, Roel Verdult, and Ronny Wichers Schreur. Dismantling MIFARE
Classic, 2008.

[14] Trans Link Systems (TLS). OV-chipkaart Project, http://www.ov-
chipkaart.nl, 2008.

[15] Pieter Siekerman and Maurits van der Schee. Security Evaluation of the
disposable OV-chipkaart, v1.6, 2007.

[16] Roel Verdult. Proof of concept, cloning the OV-Chip card,
http://www.cs.ru.nl/ flaviog/OV-Chip.pdf, 2008.

35

[17] Informatie Beheer Groep. OV Studentenkaart, http://www.ib-groep.nl,
2008.

[18] Ruben Muijrers. Mifare Trace Decrypter (MiTraDe), Not public available,
2008.

[19] Institute of Electrical —and Electronics Engineers, Inc.
Guidelines for use of a 48-bit Fxtended Unique Identifier,
http://standards.ieee.org/regauth /oui/tutorials/EUI48.html, 2008.

[20] ISO/IEC 15408. Information technology — Security techniques — Evaluation
criteria for IT security, Second Edition, 2005.

[21] Ruben Muijrers, Peter van Rossum, Ronny Wichers Schreur. Mifare
Toolkit, 2008.

[22] Radboud University, Digital Security. Visual demonstration of the Mifare
Hack, http://nl.youtube.com/watch?v=NW3RGbQTLhE, 2008.

[23] Auguste Kerckhoffs. La cryptographie militaire. Journal des sciences mil-
itaires, IX, 1883. pp. 5-38, Jan. 1883, and pp. 161-191, Feb. 1883.

[24] Karsten Nohl and Henryk Plotz. Mifare, little security, despite obscurity.
Presentation on the 24th Congress of the Chaos Computer Club in Berlin,
December 2007.

[25] Philips Semiconductors. SmartMX platform features, Secure Smart Card
Controller Platform, Short Form Specification, Rev 1.0, 2004.

[26] J.-H. Hoepman, E. Hubbers, B. Jacobs, M. Oostdijk, and R. Wichers
Schreur. Crossing borders: Security and privacy issues of the european
e-passport. In Hiroshi Yoshiura, Kouichi Sakurai, Kai Rannenberg, Yuko
Murayama, and Shinichi Kawamura, editors, Advances in Information and
Computer Security. International Workshop on Security (IWSEC 2006), vol-
ume 4266 of Lecture Notes in Computer Science, pages 152—167. Springer
Verlag, 2006.

[27] Henning Richter, Wojciech Mostowski, and Erik Poll. Fingerprinting Pass-
ports, NLUUG 2008 Spring Conference on Security, Ede, the Netherlands,
2008.

[28] Yaniv Shaked and Avishai Wool. Cracking the Bluetooth PIN, Proceedings
of the 3rd international conference on Mobile systems, applications, and
services, June 06-08, Seattle, Washington, 2005.

[29] Frank A. Stevenson. Cryptanalysis of Contents Scrambling, 1999.

[30] Elad Barkan, Eli Biham, and Nathan Keller. Instant Ciphertext-Only
Cryptanalysis of GSM Encrypted Communication, Advances in Cryptology
CRYPTO 2003, volume 2729 of Lecture Notes in Computer Science, 2003.

36

[31] Erik Tews, Ralf-Philipp Weinmann, Andrei Pyshkin. Breaking 104 bit WEP
in less than 60 seconds, 2007.

37

10 Appendix A: Full decrypted check-out trace

OV-chipkaart

Plain Mifare trace
Decrypted with MiTraDe by Ruben Muijrers
MiTraDe version 1.7a

Decrypted
S
Idx | Src
e
0 | RD
1 | TAG
2 | RD
3 | TAG
4 | RD
5 | TAG
6 | RD
7 | TAG
8 | RD
9 | TAG
10 | RD
11 | TAG
12 | RD
13 | TAG
14 | RD
15 | TAG
16 | RD
17 | TAG
18 | RD
19 | TAG
20 | RD
21 | TAG
22 | RD
23 | TAG
24 | RD
25 | TAG
26 | RD
27 | TAG
28 | RD
29 | TAG
30 | RD
31 | TAG
32 | RD
33 | TAG

on Fri Apr 04 20:25:

REQUEST
AWAKE
ANTI COLL
UID

ANTI COLL
TAG TYPE
AUTH

Nt

Nr + Nt’
Nt"

READ
DATABLOCK
READ
DATABLOCK
AUTH

Nt

Nr + Nt’
Nt n

READ
DATABLOCK
READ
DATABLOCK
READ
DATABLOCK
READ
DATABLOCK
AUTH

Nt

Nr + Nt’
Nt"

READ
DATABLOCK
READ
DATABLOCK

02 00
93 20
26 05
93 70
18 37
60 03
8F 08
64 CE
17 44
30 01
84 00
30 02
80 E8
60 FF
98 85
FC 65
86 38
30 FB
9B 00
30 FC
56 78
30 FD
9C 00
30 FE
56 78
60 5F
98 59
CA 07
95 D1
30 5C
OE 02
30 5D
00 00

38

01 2008

TE
26
CD
6E
F9
F5
BO
8B
00
10
40
8D
61
EE
73
5E
o7
E1l
9A
68
07
F3
9A
87
01
Cc8
4E
EB
94
62
00

D1
05

49
A3
8D
DF
B9
00
8B
00
74
D8
77
08
E1l
20
95
B9
84
60
B6
B8
D1
2E
21
Cc9
30
00
21
00

8C
TE

28

06

00

83

01

AO

01

9A

34

00

00

D1

B4

03

00

OF

23

12

23

01

AA

00

00

8C

06

AO

00

EF

45

34

45

23

AE

22

00

86

FA

00

00

55

60

56

60

45

AO

8A

00

74

13

00

12

7C

12

6C

C1

00

AE

00

34

02

34

02

4B

00

E4

00

56

34

56

34

CcOo

00

01

00

78

56

78

56

00

00

5C

00

9A

78

9A

71

00

00

18

00

BO

9A

BO

9A

00

00

OE

00

12

B6

12

B6

00

00

80

00

34

20

34

40

00

00

FC

21

58

3A

4A

77

03

37

86

96

11

1F

Co

5D

5B

49

34
35
36
37
38
39
40
41
42
43
44
45
46
a7
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79

RD
TAG
RD
TAG
RD
TAG
RD
TAG
RD
TAG
RD
TAG
RD
TAG
RD
TAG
RD
TAG
RD
TAG
RD
TAG
RD
TAG
RD
TAG
RD
TAG
RD
TAG
RD
TAG
RD
TAG
RD
TAG
RD
TAG
RD
TAG
RD
TAG
RD
TAG
RD
TAG

READ
DATABLOCK
AUTH

Nt

Nr + Nt’
Ng"

READ
DATABLOCK
READ
DATABLOCK
READ
DATABLOCK
READ
DATABLOCK
READ
DATABLOCK
AUTH

Nt

Nr + Nt’
Nt"

READ
DATABLOCK
READ
DATABLOCK
READ
DATABLOCK
READ
DATABLOCK
AUTH

Nt

Nr + Nt’
Nt"

READ
DATABLOCK
READ
DATABLOCK
READ
DATABLOCK
READ
DATABLOCK
AUTH

Nt

Nr + Nt’
Nt n

WRITE

ACK

30
00
60
OE
6C
90
30
20
30
00
30
00
30
9C
30
05
60
11
75
80
30
08
30
0A
30
08
30
3A
60
16
DA
BA
30
28
30
OE
30
29
30
OE
61
AB
2A
E9
AO
OA

5E
00
FF
DF
DD
22
F9
00
F1
00
F2
00
F7
01
F8
34
EF
BO
54
6C
EA
10
EB
00
EC
10
ED
00
CF
56
31
24
C2
00
C3
50
CA
00
CB
50
CF
96
72
19
Cco

39

F9
00
8D
D4
2D
72
4C
F8
04
00
9F
00
32
59
C5
01
0C
97
E8
54
56
55
DF
FA
60
55
E9
FA
OE
E1l
8C
26
1C
55
95
19
54
55
DD
00
D6
61
46
61
53

13
00
74
D5
Cc2
TF
Cc2
00
4E
00
7C
00
2B
08
D3
62
64
17
BF
59
EO
04
F1
00
85
04
94
00
45
23
83
58
4D
44
5C
00
C1
44
DO
00
5C
CD
46
74
7

00

C1

00

00

00

01

40

A3

03

00

03

00

6B

03

00

03

19

F2

00

OB

00

00

00

60

16

oF

EO

00

DB

00

2B

EO

00

EO

00

CD

00

17

80

00

00

00

10

42

00

00

58

00

87

40

00

40

00

5F

00

90

01

00

00

05

00

TF

00

00

00

00

3D

10

00

10

00

39

00

co

00

00

70

00

28

00

20

00

00

00

00

00

00

04

00

00

01

00

00

00

00

00

50

00

50

00

00

00

00

58

00

00

00

00

00

00

00

00

00

00

EO

00

00

00

00

A8

00

10

00

01

00

01

00

00

00

00

00

55

00

1F

00

10

00

FO

00

FO

00

00

00

00

00

00

00

80

00

90

00

3F

00

3F

00

00

00

00

00

15

00

20

00

20

00

00

00

00

00

00

00

00

00

00

00

02

00

02

00

10

00

10

00

37

E2

37

37

40

80

OF

AC

AD

25

21

A8

31

97

49

14

49

49

2B

8A

D9

A9

FC

43

79

5B

F7

86

+ —_—— ——— — — — — —— — — —— — — — — ——— — —— — — — — — — — — — — — — — — -

RD
TAG
RD
TAG
RD
TAG
RD
TAG
RD
TAG
RD
TAG
RD
TAG
RD
TAG
RD
TAG
RD
TAG
RD
TAG
RD
TAG
RD
TAG
RD
TAG
RD
TAG
RD
TAG
RD
TAG
RD
TAG
RD
TAG
RD
TAG
RD
TAG

 —_——_— e e e e e e — — — — — — — — — — — — — — —

F —— e e e e — — — — — — — — — — — — — — — — — ——

DATABLOCK
ACK
WRITE

ACK
DATABLOCK
ACK

AUTH

Nt

Nr + Nt’
Nt"

WRITE

ACK
DATABLOCK
ACK
WRITE

ACK
DATABLOCK
ACK

AUTH

Nt

Nr + Nt’
Nt"

WRITE

ACK
DATABLOCK
ACK
WRITE

ACK
DATABLOCK
ACK
WRITE

ACK
DATABLOCK
ACK
WRITE

ACK
DATABLOCK
ACK
WRITE

ACK
DATABLOCK
ACK

4+ —_——— — — — — — —— — — —— ——— — ——— ——— — — — — — — — — — — — — — — -

28 00

A0 C1

1A 90

61 DF

86 11

4F EO

77 D7

A0 DA

29 00

AO DB

1A 90

61 FF

1D AF

BO 7D

OA C6

AO F5

9C 01

AO F6

05 34

AO FA

20 01

A0 FC

56 78

AO FB

40

55

DA

09

57

5B

C1

FF

88

55

01

01

55

41

42

79

7D

49

E6

01

8A

00

BC

9A

03

44

66

70

4C

6F

1F

26

C8

44

D9

50

6D

FC

7C

41

11

08

23

62

E9

00

8C

B7

F8

03

00

D3

03

09

6C

01

40

00

89

01

EO

00

79

EO

70

95

60

16

00

AO

23

E8

00

53

E8

00

31

00

10

80

12

45

20

00

53

20

00

4E

05

00

01

34

60

00

00

00

00

70

00

DO

5C

12

50

00

50

00

01

00

04

02

34

00

00

00

00

58

00

1A

34

56

02

00

02

00

00

00

A8

56

78

00

00

00

00

55

00

00

78

9A

3F

00

3F

00

00

00

00

9A

BO

30

00

30

00

15

00

00

B6

12

10

00

10

00

00

00

00

20

34

A3

73

B3

C3

97

80

50

74

FA

CA

2C

44

A7

FD

8A

E4

59

D7

11 Appendix B: Blueprint, design and compo-
nents of the Ghost

41

Eaves-
dropping

T

EAVESDROPPING

Project nummer:62000521
tek nummer: 5993

ontwerper: Peter Dolron
realisatie: lvo Hendriks
datum: 29 november 2007
update: ---

modificatie: -—-

vce vce
© CE1 10uF
R14
SW1 10k Cc16
F 1123624 PUSHBUTTON 100n
R13 470E | |
—I;I—
| == c20 F 1053611
575 \ « 100n u
MAX3221 IDB
c17 us F 1212705 EARCESEE BN
100n PIC18F4620 ﬁ'ﬁ_ FORCEOFF EN J—D
MOLEX CONNECTOR 7 27 15 2
e | Vad RE2 VCCo vce Cl+ o1 A7on
Vdd RE1 25— L
REO |25 — H GND ve |3 2 |1 c22
MCLR 18 | ViR RD7 |8 [470n
RD6 F4— 13 pout c1- 4 5 Ton
4 ——ovce —19 1 rao RD5 [2—
F 1141111 LED D6 R17 470E 20 | pAd o 2 12 | corcEon Gor L5 2
3—D 1\\}1 212 —211 rp2 RD3 [—
—22{ pA3 RD2 42— 1 biN co-
5 RB7 LED “ D7 R16 470E 23 | pas Rb7 [Cae
REG ! L el m— —24 RAS Roo 38— —10 1 \NVALID V-
1 | RBO RC6
— LE1D w8 5 4 R18470Ez 2 Ref RCT 1 2 ROUT RIN &
ICD CONNECTOR JP1 K — RB2 R85 42 c24
J2 JUMPER LED D9 R19 470E R ez 100n
26 ol 1 \\K 24 ——2 uC RB3 RB3 R |36
?& uC RB4 RB4 RC1 30—
—"-5—1 = | RBS RCO F32——<uC RCO
15| RBS
RB7 a0
0SC1
6 C 31
Vss oo 0sc2
29 | oo 22299 F 152392
% J3
DE9S-FRS
1]
6
2
lz
u21 3
TBD 8
1] 4
NC/OE
ourt |2
VCC VCC % —
o
c12 R15
22n F 9509771 10E
F 8461147
u22
TPS7350QD
GNDRST
F 723988 EN
BT1 R20
BATTERY 250k
D10
FB
|||22 P N OUT:; c
1N4148 IN_our oV
= c19 c18 .
220n 220n vee Svee ONTWERP: P. Dolron REALISATIE: lvo Hendriks
ﬂ ﬂ o—
Size TD/Print nr Rev
qi»GND A4 | TD:5650 TEKNUMMER: 5993 PRINTNUMMER: 060114A :
Date Tuesday, November 27, 2007 Dwg nr_3 - 4

MP1 1

Antenne
Cc1

22
MP2 2 — P —

F 9528601

2 N1

F 9801359

D4
BAR42

Voltage instellen op maximum

LOAD MODULATOR

DEMODULATOR

R4
47k

U1F
CD74HC14M

U1E
CD74HC14M

D1

D5
BAR42
F 1103160
u
CD74HC14M

S>uC RB3

u1B
CD74HC14M

F 1141482
N R5
D11 :_04 1K
BZX284-C3V9 ——10n)
F 1081393 INSTELLEN OP 180E
R8 1k
ot r——2—
vee F 9590935
U2 F 9591524
u3D uss
o le— 5
Q2 l— 6
RST Q3 H— 4
Q4
vee el SN72HC03D SN74HC03D i
S 10k USA F 1201317
Q8 u3c 2
Q9 uC RB4 (K- D Q
a0 e — 9 2
ol ans— 10 8 3boik
CK a2 [—
SN74HC03D vee CLR
74HC4040DG4 c8 PRE
R9 1k 22n
VeCo—l ——2 74HC74D
vee
TN
co 1
22n 3
2
SN74HC03D
U1A
CD74HC14M uss
la
=
b CLK
CIR EV
PRE ONTWERP: P. Dolron REALISATIE: Ivo Hendriks
74HC74D

TD/Print nr
TD: 5650 TEKNUMMER: 5993 PRINTNUMMER: 060114A

[Date _Thursday, November 29, 2007

Dwgnr_4

9PSUB-D-F

PLUG-MINI_9PDIN M

o

Ja
FEMALE

J5

1 MTR Flexible Cable

MALE

Jé

—\!\JbeU'!LX

ol Nl S0 S @)

RJ-12 ICD-SOCKET

TOP:

FronT: B
1 =}

15cm Flat Cable

MOLEX

Bovenaanzicht

Pinout print-deel

LET OP!!

Pinning loopt van rechts naar links

AEV Cable

ONTWERP: P. Dolron REALISATIE: Ivo Hendriks

[Size
Ad

TD/Print nr
TD: 5650 TEKNUMMER: 5993 PRINTNUMMER: 060114A

Rev

Date

Tuesday, December 18, 2007 Dwg nr_4 -

TD: 5650 TEKNUMMER: 5993 PRINTNUMMER: 060114A Revision: .
Eavesdropping

ONTWERP: P. Dolron REALISATIE: Ivo Hendriks

Bill Of Mat¢Page1

Quantity ~Reference Part
Bestelnummer Farnell:

1 BT1 BATTERY 723988 (clipjes)
1 CE1 10uF
1 C1 22p
1C2 10p
1C3 100p
1.C4 10n
1C5 56p
1.C7 6...60p 9528601
5 C8 22n
co 22n
c10 22n
c11 22n
c12 22n
4C16 100n
c17 100n
c20 100n
c24 100n
218 220n
c19 220n
3 c21 470n
c22 470n
c23 470n
5 D1 BAR42 9801359
D2 BAR42
D3 BAR42
D4 BAR42
D5 BAR42
4D6 LED 1141111
D7 LED
D8 LED
D9 LED
1 D10 1N4148
1 D11 BZX284-C3V9 1081393
1 JP1 JUMPER
102 ICD CONNECTOR
1J3 DE9S-FRS 152392
2 MP1 MEASURINGPIN DOOR SOLDEREN
MP2 MEASURINGPIN DOOR SOLDEREN
1 R1 4E7
1 R3 100k
1 R4 47k
1 RT5 1k 1141482
2 R8 1k
R9 1k
7 R6 470E
R7 470E
R13 470E
R16 470E
R17 470E
R18 470E
R19 470E
2 R10 10k
R14 10k
1 R12 3k3
1 R15 10E
1 R20 250k
1 SW1 PUSHBUTTON 1123624
1 U1 CD74HC14M 1103160
102 74HC4040DG4 9591524
1U3 SN74HC03D 9590935
1 U4 74HC74D 1201317
1U5 PIC18F4620 1212705
1U6 MAX3221 IDB 1053611
1 U21 TBD 9509771
1022 TPS7350QD 8461147

Montage materiaal:

Plug mini din 9p 152391
Sub-D 9way 1075335

V11090

Pl

c20

100n

(2}
m..u oNN_Hq_I.Ml_H_mm
" - -
=PIC18F4620= "_I_" P
s F O @
Jﬁ_ 1d m £ N mw.
m 5 -
)
I, ©GaaE = 2 i 59 e
9
e e e P O g 34
%=
- |

ICD CONNECTOR

DE9?S5-FRS

®
®
®
° ® o
®
o o
O
® o
®
e O ®
2
®
®
o’ u
® B o e
®
004 O
'YYY)
. 00000
o000
.v AMJ-v ‘-vha .v

